Characteristics of Geotemperature-Geopressure System of the Qianjiang Formation in the Qianjiang Depression and Their Relationship with Petroleum Accumulation
-
摘要: 基于200余口钻井的实测地温、地压及声波测井等资料,利用地温-地压系统原理,剖析了潜江凹陷潜江组的地温场、压力场及温压系统特征,并从油气生成、保存及分布角度探讨了温压系统与油气成藏的关系.研究表明:蚌湖和周矶向斜带具有较高的地温梯度,有利于潜江组烃源岩成熟生烃.潜江组砂岩今地层压力多为常压,深部泥岩欠压实发育,强化了深部泥岩的封闭作用.潜江组纵向发育静压型和高压型两类地温-地压系统,其中静压型主要发育于潜北陡坡带、东部斜坡带和西部斜坡带,以自生自储型油气藏为主;高压型发育于蚌湖和周矶向斜带,油气藏集中分布在深层超压体系顶部和浅层常压体系内部.平面上可划分为常温高压、低温高压、高温常压、常温常压、低温常压、高温低压、常温低压和低温低压8个分区,油气多分布于常温常压区.Abstract: Based on the measured temperature, pressure and acoustic log data of more than two hundred wells, the distribution characteristics of geothermal field, geopressure field and the geothermal-geopressure system of the Qianjiang Formation in the Qianjiang depression are analyzed by using the theory of geothermal-geopressure system. The relationship between the systems with petroleum accumulation is also discussed from the perspectives of hydrocarbon generation, preservation and distribution. This research comes to the following results: The Banghu and Zhouji syncline belts have higher geothermal gradient, which is favorable to the maturation of the Qianjiang Formation source rock expulsion. The present pressures of the Qianjiang Formation and stones mostly belong to normal range, whereas the deep Qianjiang Formation mudstones present uncompaction which enhanced its seal ability. In vertical, the T-P system of the Qianjiang Formation includes two kinds of static pressure and overpressure. The static pressure systems mainly distribute at the Qianbei steep slope belt, the eastern slope belt and the western slope belt where the reservoirs were formed by self-generation and self-storage, whereas the overpressure systems exist in the Banghu and Zhouji syncline belts where the reservoirs are distributed mostly at the top of the deep overpressure system and within the shallower normal pressure system. The lateral T-P systems can be divided into 8 subareas, namely, NTHP, LTHP, HTNP, NTNP, LTNP, HTLP, NTLP and LTLP, and the NTNP is the place where petroleum mainly accumulated.
-
图 4 潜江凹陷及各构造单元温压系统类型(图例同图 1)
a.潜江凹陷;b.潜北陡坡带;c.东部斜坡带;d.蚌湖向斜带;e.周矶向斜带;f.西部斜坡带
Fig. 4. Types of geothermal-geopressure systems in the Qianjiang depression and its tectonic units
表 1 潜江凹陷潜江组代表性单井地温梯度与生烃门限深度关系
Table 1. Relationship between geothermal gradient and threshold depth of hydrocarbon generation of the Qiangjiang Formation in the Qianjiang depression
构造带 区带 井位 现今门限深度(m) 地温(℃) 地温梯度(℃/100 m) 平均门限深度(m) 平均地温梯度(℃/100 m) 潜北陡坡带 钟市 钟62 1 975.5 78.3 3.00 2 062 3.01 钟76 2 242.0 80.5 2.74 钟96 1 969.0 84.2 3.31 东部斜坡带 张港 张34 1 976.0 81.9 3.18 1 976 3.18 蚌湖向斜带 广华 广23 1 853.0 84.1 3.51 1 787 3.65 广1 1 715.0 85.1 3.85 广7 1 719.5 84 3.77 广10 1 737.5 84.7 3.78 广47 1 903.0 83.7 3.39 广22 1 775.0 84 3.66 广35 1 805.0 83.6 3.57 王场 王79 1 751.0 79.5 3.45 1 679 3.66 王74 1 842.0 80 3.31 王36 1 807.0 79.5 3.34 王83 1 315.0 79 4.56 周矶向斜带 高场 高7 1 761.0 83.8 3.67 1 892 3.45 高14 2 022.0 84.4 3.23 西部斜坡带 浩口 浩58 1 872.0 71.5 2.80 1 986 3.22 浩17 2 100.0 95.4 3.63 表 2 潜江凹陷各构造单元探明储量统计(104t)
Table 2. A statistical table showing the proved reserves of each tectonic unit in the Qianjiang depression
系统 高压型温压系统 静压型温压系统 层位 蚌湖向斜带 周矶向斜带 比例 总计 西部斜坡带 潜北陡坡带 东部斜坡带 比例 总计 潜一段 209 0 4% 209 0 0 0 0 0 潜二段 0 0 0 0 94 207 0 9% 301 潜三上段 1 634 264 35% 1 898 200 90 56 10% 346 潜三下段 874 75 17% 949 447 440 0 26% 887 潜四上段 1 975 404 44% 2 379 324 997 557 55% 1 878 表 3 潜江凹陷各含油层系温压系统分区探明油气储量分布(104t)
Table 3. Distribution of the proved reserves of each tectonic unit in the Qianjiang depression
温压区类型 潜一、二段 潜三上段 潜三下段 潜四上段 总计 比例 常温高压区 0 13 619 0 632 7% 低温高压区 0 0 0 1 751 1 751 20% 高温常压区 0 0 188 0 188 2% 常温常压区 211 1 996 641 1 763 4 611 52% 低温常压区 207 207 0 551 965 11% 高温低压区 0 0 78 0 78 1% 常温低压区 93 29 310 193 625 7% -
[1] Cao, Q., Ye, J.R., 2007. Relation between geothermal-geopressure system and petroleum accumulation in Moliqing rift in Yitong basin. Marine Geology & Quaternary Geology, 27(3): 99-104 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200703018.htm [2] Hao, F., Zou, H.Y., Ni, J.H., et al., 2002. Evolution of overpressured systems in sedimentary basins and conditions for deep oil/gas accumulation. Earth Science—Journal of China University of Geosciences, 27(5): 610-615 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200205021.htm [3] Jin, B., Liu, Z., Li, X.S., 2008. Relationship between accumulation of natural gas and geothermal-geopressure system in Yinggehai basin. Natural Gas Geoscience, 19(1): 49-55 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX200801013.htm [4] Kang, J.Y., Ye, J.R., Guo, F.F., et al., 2010. Characteristics of geothermal-geopressure system and its relationship with oil and gas distribution in Banghu-Zhouji syncline belt in Qianjiang sag. Xinjiang Petroleum Geology, 31(5): 489-492 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD201005015.htm [5] Liu, Z., Zeng, X.B., Zhang, W.X., 1997. Relation between subsurface temperatures and formation pressures in sedimentary basins. Acta Geologica Sinica, 71(2): 180-185 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE199702009.htm [6] Liu, Z., He, W.Y., Han, J., et al., 2000. Relation of geotemperature-formation pressure systems with migration and accumulation of petroleum in the east of Junggar basin. Journal of the University of Petroleum, China, 24(4): 15-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX200004003.htm [7] Liu, Z., Dai, L.C., Zhao, Y., et al., 2005. Characteristics of geotemperature-pressure systems and their controlling functions on pools' distribution in the Jiyang depression. Chinese Journal of Geology, 40(1): 1-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200501000.htm [8] Magoon, L.B., 1988. Petroleum system—a classification scheme for research, resource assessment, and exploration. In: Magoon, L.B., ed., Petroleum systems of the United States. United States Goverment Printing Office, Washington D.C., 2-15. [9] Tong, X.L., Lu, M.G., 2006. The source-reservoir-seal associations in the Qianjiang Salt Lake basin, Hubei. Sedimentary Geology and Tethyan Geology, 26(1): 92-95 (in Chinese with English abstract). http://www10215.edu6.org/cjiyttis/qkwy/tongxiaolan-e.pdf [10] Xie, X.N., Li, S.T., Liu, X.F., 2006. Basin fluid dynamics in abnormally pressured environments. China University of Geosciences Press, Wuhan, 21-23 (in Chinese). [11] Ye, J.R., Yang, X.H., 2003. Characteristics of the temperature and pressure fields in Chagan sag of Yingen-ejina banner basin and their petroleum geological significance. Natural Gas Industry, 23(2): 15-18 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-TRQG200302004.htm [12] 曹强, 叶加仁, 2007. 伊通盆地莫里青断陷地温地压系统与油气成藏关系. 海洋地质与第四纪地质, 27(3): 99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200703018.htm [13] 郝芳, 邹华耀, 倪建华, 等, 2002. 沉积盆地超压系统演化与深层油气成藏条件. 地球科学——中国地质大学学报, 27(5): 610-615. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205021.htm [14] 金博, 刘震, 李绪深, 2008. 莺歌海盆地地温-地压系统特征及其对天然气成藏的意义. 天然气地球科学, 19(1): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200801013.htm [15] 康建云, 叶加仁, 郭飞飞, 等, 2010. 潜江凹陷蚌湖-周矶向斜带温压系统特征及油气分布. 新疆石油地质, 31(5): 489-492. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201005015.htm [16] 刘震, 曾宪斌, 张万选, 1997. 沉积盆地地温与地层压力关系研究. 地质学报, 71(2): 180-185. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199702009.htm [17] 刘震, 贺维英, 韩军, 等, 2000. 准噶尔盆地东部地温-地压系统与油气运聚成藏的关系. 石油大学学报, 24(4): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200004003.htm [18] 刘震, 戴立昌, 赵阳, 等, 2005. 济阳坳陷地温-地压系统特征及其对油气藏分布的控制作用. 地质科学, 40(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200501000.htm [19] 童小兰, 卢明国, 2006. 潜江盐湖盆地生储盖组合特征. 沉积与特提斯地质, 26(1): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200601015.htm [20] 解习农, 李思田, 刘晓峰, 2006. 异常压力盆地流体动力学. 武汉: 中国地质大学出版社, 21-23. [21] 叶加仁, 杨香华, 2003. 银-额盆地查干凹陷温压场特征及其油气地质意义. 天然气工业, 23(2): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200302004.htm