Frame of the Hydrocarbon Conduit System and Conducting Pattern in Lunnan Low Uplift
-
摘要: 多源多灶的生烃背景导致轮南地区的油气成藏过程高度复杂化.基于油气成藏动力学理论,综合运用钻井、地震以及地球化学等资料对轮南低凸起关键时期油气输导体系格架及典型油气藏输导样式的研究表明,由于志留系沥青砂盆地级的分布特征有力地证实了加里东晚期奥陶系岩溶缝洞体尚未形成,因此志留系砂体是加里东晚期源自寒武系烃源岩的烃类向轮南低凸起横向输导的主要通道;其次,海西早期的强烈抬升及长时间的暴露剥蚀导致表生岩溶作用深度改善了轮南地区碳酸盐岩层系的储集效能,而潜山风化壳之下的奥陶系岩溶缝洞储集体是这一时期源自满加尔坳陷内奥陶系烃源岩烃类的横向运载层;喜山期油气成藏的实质为海西晚期奥陶系整装油气藏形成后的调整改造过程,包括过量干气的气洗改造以及不同尺度断裂的垂向调整.轮南油田、桑塔木油田以及解放渠东油田三叠系油气藏的形成均受控于深大断裂的垂向输导.同时,上覆盖层的强制性封闭将喜山期干气的横向输导路径束缚于奥陶系内部,奥陶系油藏经气洗相分馏改造转变为次生的饱和凝析气藏.而由于桑塔木断垒带地区连接奥陶系与石炭系的层间断裂以及轮古东地区奥陶系层内断裂活动所诱发的泄压相分馏改造,不仅在石炭系圈闭形成了纯气相的不饱和凝析气藏,还直接控制了轮古东油田凝析气藏及其流体性质的分布.Abstract: The process of oil and gas accumulation is highly complex in Lunnan low uplift due to the fact that hydrocarbon has been generated by multiple petroleum kitchens.Based on the principles of dynamics of petroleum accumulation, we found the macro frame of the hydrocarbon conduits system and conducting pattern of Lunnan petroleum province in this paper.The distribution with basin-scale of the Silurian argulite proves that the Ordovician karst reservoir hasn't been formed, when the Cambrian source rock got into the step of hydrocarbon generating climax in the late Caledonian movement.Therefore, Silurian sand bed was the main lateral conduit path of the oil-gas originated from the Cambrian.Meanwhile, the intense uplift with a long time exposure happened in the early Hercynian movement triggered a deep hypergene karst that upgraded the quality of the carbonate reservoir effectively, and the horizontal migration pathway of the petroleum was the Ordovician karst bed.The essence of the hydrocarbon accumulating in Himalayan movement is a process of adjustment and reconstruction to the Ordovician self-contained pools formed in the Hercynian movement, which included gas washing triggered by the excessive dry gas invasion and the vertical conducting adjustment by faults of various scale.The origin of the Triassic pools in Lunnan, Sangtamu and Jiefangqudong oilfield was mainly controlled by the vertical conduit of discordogenic fault.Furthermore, the powerful seal ability of the overlying cap rock restrained the lateral conducting bed of the dry gas distributed in the Ordovician so that the oil pool in the Ordovician transformed into the secondary condensate pool by fractionation of gas washing. Moreover, the phase fractionation of decompression caused by fractures, intrabed faults that connected Ordovician and Carboniferous in the Sangtamu area and the endostratic fault of Ordovician not only formed the secondary condensates with vapour phase in the Carboniferous traps, but also controlled the distribution of the condensate pool and its fluid property in Lungudong oilfield.
-
图 6 层内断裂分馏改造输导样式(轮古东油田) (据蔡忠贤等,2009修改)
Fig. 6. The pattern of the conducting model of fractionation triggered by the endostratic fault
-
[1] Aydin, A., 2000. Fractures, faults and hydrocarbon entrapment, migration and flow. Marine and Petroleum Geology, 17(7): 797-814. doi: 10.1016/S0264-8172(00)00020-9 [2] Bai, Z.K., Lv, X.X., Yu, H.F., et al., 2011. Characteristics and accumulation significance of the pathway systems in Lower Palaeozoic carbonate, Tazhong area. Geological Science and Technology Information, 30(5): 60-68(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201105012.htm [3] Cai, Z.X., Wu, N., Yang, H.J., et al., 2009. Mechanism of evaporative fractionation in condensate gas reservoirs in Lunnan low salient. Natural Gas Industry, 29(4): 21-24(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200904006.htm [4] Chen, J.Y., Xiong, S.Q., Bi, Y.P., et al., 2000. The characteristics of petroleum system in faulted basin. Acta Petrolei Sinica, 21(2): 36-41(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200002007.htm [5] Chen, Z.H., Zha, M., Zhu, X.M., 2003. Relation between unconformity surface and hydrocarbon migration and accumulation of Luliang uplift in Junggar basin. Journal of Palaeogeography, 5(1): 120-126(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX200301011.htm [6] Færseth, R.B., Johnsen, E., Sperrevik, S., 2007. Methodology for risking fault seal capacity: implications of fault zone architecture. AAPG Bulletin, 91(9): 1231-1246. doi: 10.1306/03080706051 [7] Fisher, Q.J., Knipe, R.J., 2001. The permeability of faults within siliciclastic petroleum reservoirs of the North Sea and Norwegian continental shelf. Marine and Petroleum Geology, 18(10): 1063-1081. doi: 10.1016/S0264-8172(01)00042-3 [8] Gibson, R.G., 1994. Fault-zone seals in siliciclastic strata of the Columbus basin, offshore Trinidad. AAPG Bulletin, 78(9): 1372-1385. http://aapgbull.geoscienceworld.org/content/78/9/1372 [9] Guo, T.L., 2011. Differences in reservoir-forming between porous and fractured gas pools in carbonates, the northeastern Sichuan basin. Oil &Gas Geology, 32(3): 311-317(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/syytrqdz201103001 [10] Gudmundsson, A., 2001. Fluid overpressure and flow in fault zones: field measurements and models. Tectonophysics, 336(1-4): 183-197. doi: 10.1016/S0040-1951(01)00101-9 [11] Hanks, C.L., Lorenz, J., Teufel, L.W., et al., 1997. Lithologic and structural controls on natural fracture distribution and behavior within the Lisburne Group, northeastern Brooks range and North Slope subsurface, Alaska. AAPG Bulletin, 81(10): 1700-1720. http://www.researchgate.net/publication/308485684_Lithologic_and_Structural_Controls_on_Natural_Fracture_Distribution_and_Behavior_Within_the_Lisburne_Group_Northeastern_Brooks_Range_and_North_Slope_Subsurface_Alaska [12] Hao, F., Zou, H.Y., Jiang, J.Q., 2000. Dynamic of petroleum accumulation and its advances. Earth Science Frontiers, 7(3): 11-21(in Chinese with English abstract). [13] He, J., Han, J.F., Pang, W.Q., 2007. Hydrocarbon accumulation mechanism in the giant buried hill of Ordovician in Lunnan paleohigh of Tarim basin. Acta Petrolei Sinica, 28(2): 44-48(in Chinese with English abstract). http://www.researchgate.net/publication/289418210_Hydrocarbon_accumulation_mechanism_in_the_giant_buried_hill_of_Ordovician_in_Lunnan_paleohigh_of_Tarim_Basin [14] Hillis, R.R., 1998. The influence of fracture stiffness and the in situ stress field on the closure of natural fractures. Petroleum Geoscience, 4(1): 57-65. doi: 10.1144/petgeo.4.1.57 [15] Jiang, Z.X., Pang, X.Q., Liu, L.F., et al., 2008. Quantitative research of hydrocarbon damage of asphaltic sand Silurian, Tarim basin. Science in China (Ser. D), 38(Suppl. ): 89-94(in Chinese). [16] Jin, Z.J., 2011. Formation and accumulation of oil and gas in marine carbonate strata in Chinese sedimentary basins. Science China Earth Sciences, 55(3): 368-385. doi: 10.1007/s11430-011-4264-4 [17] Knipe, R.J., 1997. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs. AAPG Bulletin, 81(2): 187-195. http://aapgbull.geoscienceworld.org/content/81/2/187 [18] Liu, X.F., Wu, N., Cai, Z.X., et al., 2011. Pattern of vertical fracture development controlled by mechanical stratigraphy in carbonate layer in Xikeer outcrop area of Xinjiang Autonomous region. Earth Science—Journal of China University of Geosciences, 36(6): 1125-1133(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201106018.htm [19] Luo, K.P., Zhou, Z.Y., He, Z.L., 2007. Application and development of petroleum system in China basins. Petroleum Geology & Experiment, 29(2): 143-148(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200702008.htm [20] Luo, Q., Pang, X.Q., Jiang. Z.X., 2005. A new method for effective trace petroleum migration path: concept of fault section dominant migrating channel and its application. Geological Review, 51(2): 156-162(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dzlp200502007 [21] Lv, H.T., Chen, H.H., Tang, D.Q., et al., 2009. Determination of hydrocarbon charging events and timing of accumulation in the Triassic of Tahe area, the Tarim basin. Oil & Gas Geology, 30(3): 300-309(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200903008.htm [22] Lv, H.T., Zhang, W.B., Zhang, D.J., et al., 2008. Study of the evolution process of the Ordovician oil reservoir in the Tahe oil field, the Tarim basin. Petroleum Geology & Experiment, 30(6): 547-551(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0146638008001587 [23] Miao, Z.Y., Chen, J.F., Zhang, C., et al., 2011. Regularity of distribution and accumulation stages of natural gases in the Lunnan lower uplift of the Tarim basin. Acta Petrolei Sinica, 32(3): 404-410(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201103004.htm [24] Pang, X.Q., Zhou, X.Y., Li, Z., et al., 2011. A model for controlling hydrocarbon and predicting favorable exploration zones of the Tazhong palaeouplift in Tarim basin, NW China. Acta Petrolei Sinica, 32(2): 189-198(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201102002.htm [25] Peters, K.E., Fowler, M.G., 2002. Applications of petroleum geochemistry to exploration and reservoir management. Organic Geochemistry, 33(1): 5-36. doi: 10.1016/S0146-6380(01)00125-5 [26] Tian, S.C., Chen, J.Y., Zhang, S.L., et al., 1996. Dynamic pool-formation system. China Petroleum Exploration, 1(2): 20-24(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KTSY199602005.htm [27] Underwood, C.A., Cooke, M.L., Simo, J.A., et al., 2003. Stratigraphic controls on vertical fracture patterns in Silurian dolomite, northeastern Wisconsin. AAPG Bulletin, 87(1): 121-142. doi: 10.1306/072902870121 [28] Wang, F.H., Han, J.F., Xiang, C.F., et al., 2010. Differential hydrocarbon migration and accumulation in complex fissure and pore carbonate reservoir of superposition basin: an example of pore-fissure-fracture reservoir formed by supergene karstification in Tz83 well area. Natural Gas Geoscience, 21(1): 33-41(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201001004.htm [29] Wu, C.L., Wang, X.P., Mao, X.P., et al., 1998. The concept and principles of petroleum systems dynamics: new thinking and method of basin modeling and petroleum pool forming dynamics modeling. Experimental Petroleum Geology, 20(4): 319-327(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD804.001.htm [30] Wu, D.S., Zhang, Y.Q., Liu, S.H., et al., 2006. Oil-gas migration and distribution mechanism of Lunguxi buried hill in Tarim basin. Acta Petrolei Sinica, 27(5): 41-45(in Chinese with English abstract). http://www.researchgate.net/publication/282054234_Oil-gas_migration_and_distribution_mechanism_of_Lunguxi_buried_hill_in_Tarim_Basin [31] Wu, F.F., Zhu, G.Y., Zhang, S.C., et al., 2009. Types of hydrocarbon migration pathways and its controlling effects on hydrocarbon distribution in Tarim basin. Acta Petrolei Sinica, 30(3): 332-341(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SYXB200903004.htm [32] Wu, K.Y., Zha, M., Hong, M., 2003. Relationship of reservoir formation with unconformities and their geophysical respondence in the Junggar basin. Petroleum Geology & Experiment, 25(4): 328-332(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200304002.htm [33] Wu, N., Cai, Z.X., Liu, X.F., et al., 2010. Origin of subsequent condensate pool in Lunnan low uplift, Northwest China. Journal of Earth Science, 21(3): 321-329. doi: 10.1007/s12583-010-0095-z [34] Wu, N., Cai, Z.X., Yang, H.J., et al., 2009. Quantitative evaluation and the geochemical responses of gas washing in Lunnan petroleum province. Earth Science—Journal of China University of Geosciences, 34(3): 486-492(in Chinese with English abstract). doi: 10.3799/dqkx.2009.054 [35] Yang, H.J., Hao, F., Han, J.F., et al., 2007. Fault systems and multiple oil-gas accumulation play of the Lunnan lower uplift, Tarim basin. Scientia Geologica Sinica, 42(4): 795-811(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200704016.htm [36] Yielding, G., Freeman, B., Needham, D.T., 1997. Quantitative fault seal prediction. AAPG Bulletin, 81(6): 897-917. http://aapgbull.geoscienceworld.org/content/81/6/897 [37] Zhang, H.F., Fang, C.L., 2002. Preliminary study on petroleum pool-forming dynamics of basin. Acta Petrolei Sinica, 23(4): 7-12(in Chinese with English abstract). http://www.syxb-cps.com.cn/EN/Y2002/V23/I4/7 [38] Zhang, N.F., Cao, Y.H., Kuang, J., et al., 1998. Weathering crust model of carboniferous volcanic rock in Hinterland of Junggar basin. Xinjiang Petroleum Geology, 19(6): 450-452 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD806.001.htm [39] 白忠凯, 吕修祥, 于红枫, 等, 2011. 塔中地区下古生界碳酸盐岩输导体系特征及成藏意义. 地质科技情报, 30(5): 60-68. doi: 10.3969/j.issn.1000-7849.2011.05.011 [40] 蔡忠贤, 吴楠, 杨海军, 等, 2009. 轮南低凸起凝析气藏的蒸发分馏作用机制. 天然气工业, 29(4): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200904006.htm [41] 陈建渝, 熊书权, 毕研鹏, 等, 2000. 断陷盆地中含油气系统的特征. 石油学报, 21(2): 36-41. doi: 10.3321/j.issn:0253-2697.2000.02.007 [42] 陈中红, 查明, 朱筱敏, 2003. 准噶尔盆地陆梁隆起不整合面与油气运聚关系. 古地理学报, 5(1): 120-126. doi: 10.3969/j.issn.1671-1505.2003.01.012 [43] 郭彤楼, 2011. 川东北地区碳酸盐岩层系孔隙型与裂缝型气藏成藏差异性. 石油与天然气地质, 32(3): 311-317. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201103005.htm [44] 郝芳, 邹华耀, 姜建群, 2000. 油气成藏动力学及其研究进展. 地学前缘, 7(3): 11-21. doi: 10.3321/j.issn:1005-2321.2000.03.002 [45] 何君, 韩剑发, 潘文庆, 2007. 轮南古隆起奥陶系潜山油气成藏机理. 石油学报, 28(2): 44-48. doi: 10.3321/j.issn:0253-2697.2007.02.008 [46] 姜振学, 庞雄奇, 刘洛夫, 等, 2008. 塔里木盆地志留系沥青砂破坏烃量定量研究. 中国科学(D辑), 38(增刊Ⅰ): 89-94. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2008S1011.htm [47] 刘显凤, 吴楠, 蔡忠贤, 等, 2011. 新疆西克尔地区碳酸盐岩层系垂向裂缝层控发育模式. 地球科学——中国地质大学学报, 36(6): 1125-1133. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201106018.htm [48] 罗开平, 周祖翼, 何治亮, 2007. 含油气系统理论在中国盆地研究中的应用与发展. 石油实验地质, 29(2): 143-148. doi: 10.3969/j.issn.1001-6112.2007.02.007 [49] 罗群, 庞雄奇, 姜振学, 2005. 一种有效追踪油气运移轨迹的新方法——断面优势运移通道的提出及其应用. 地质论评, 51(2): 156-162. doi: 10.3321/j.issn:0371-5736.2005.02.007 [50] 吕海涛, 陈红汉, 唐大卿, 等, 2009. 塔河地区三叠系油气充注幕次划分与成藏时期确定. 石油与天然气地质, 30(3): 300-309. doi: 10.3321/j.issn:0253-9985.2009.03.008 [51] 吕海涛, 张卫彪, 张达景, 等, 2008. 塔里木盆地塔河油田奥陶系油气成藏演化过程研究. 石油实验地质, 30(6): 547-551. doi: 10.3969/j.issn.1001-6112.2008.06.003 [52] 苗忠英, 陈践发, 张晨, 等, 2011. 塔里木盆地轮南低凸起天然气分布规律与成藏期次. 石油学报, 32(3): 404-410. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201103004.htm [53] 庞雄奇, 周新源, 李卓, 等, 2011. 塔里木盆地塔中古隆起控油气模式与有利区预测. 石油学报, 32(2): 189-198. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201102002.htm [54] 田世澄, 陈建渝, 张树林, 等, 1996. 论成藏动力学系统. 勘探家, 1(2): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY199602005.htm [55] 王福焕, 韩剑发, 向才富, 等, 2010. 叠合盆地碳酸盐岩复杂缝洞储层的油气差异运聚作用——塔中83井区表生岩溶缝洞体系实例解剖. 天然气地球科学, 21(1): 33-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201001004.htm [56] 吴冲龙, 王燮培, 毛小平, 等, 1998. 油气系统动力学的概念模型与方法原理——盆地模拟和油气成藏动力学模拟的新思路、新方法. 石油实验地质, 20(4): 319-327. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD804.001.htm [57] 吴东胜, 张玉清, 刘少华, 等, 2006. 塔里木盆地轮古西潜山油气运聚及分布机理. 石油学报, 27(5): 41-45. doi: 10.3321/j.issn:0253-2697.2006.05.007 [58] 武芳芳, 朱光有, 张水昌, 等, 2009. 塔里木盆地油气输导体系及对油气成藏的控制作用. 石油学报, 30(3): 332-341. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200903004.htm [59] 吴孔友, 查明, 洪梅, 2003. 准噶尔盆地不整合结构的地球物理响应及油气成藏意义. 石油实验地质, 25(4): 328-332. doi: 10.3969/j.issn.1001-6112.2003.04.002 [60] 吴楠, 蔡忠贤, 杨海军, 等, 2009. 轮南低凸起气洗作用响应及定量评价. 地球科学——中国地质大学学报, 34(3): 486-492. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200903013.htm [61] 杨海军, 郝芳, 韩剑发, 等, 2007. 塔里木盆地轮南低凸起断裂系统与复式油气聚集. 地质科学, 42(4): 795-811. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200704016.htm [62] 张厚福, 方朝亮, 2002. 盆地油气成藏动力学初探——21世纪油气地质勘探新理论探索. 石油学报, 23(4): 7-12. doi: 10.3321/j.issn:0253-2697.2002.04.002 [63] 张年富, 曹耀华, 况军, 等, 1998. 准噶尔盆地腹部石炭系火山岩风化壳模式. 新疆石油地质, 19(6): 450-452. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD806.001.htm