Removal of DDTs from Water by Modified Diatomite
-
摘要: 采用阳离子表面活性剂(十六烷基三甲基溴化铵)对硅藻土进行改性, 并以优选的改性方案为基础, 研究了该有机硅藻土对水中有机氯农药DDTs(p, p'-DDT、p, p'-DDE和p, p'-DDD)的吸附过程及增强机理.结果表明, 十六烷基三甲基溴化铵能有效改变硅藻土的Zeta电位、比表面积和表面疏水性质, 从而提高硅藻土吸附有机氯农药的能力.改性硅藻土对水中3种有机氯农药的吸附能力依次为: p, p'-DDT>p, p'-DDE>p, p'-DDD.基于模型的准确性(R2值)考虑, Redlich-Peterson方程能更好地用于拟合DDTs在改性硅藻土上的等温吸附曲线.Abstract: This study investigates the adsorption behavior of organochlorine pesticides DDTs (p, p'-DDT, p, p'-DDE and p, p'-DDD) onto organo-diatomite (OD), which was modified by Cetyltrimethylammonium Bromide (CTMAB). The strengthen mechanisms and optimization design of the adsorption process are also discussed. The results show that the cationic surfactant could change the Zeta potential, BET surface area and hydrophobic characteristics of diatomite, which lead to the better adsorption efficiency of DDTs. The adsorption efficiency of the three DDTs onto OD follows the order of p, p'-DDT > p, p'-DDE > p, p'-DDD. According to the value of R2, it can be concluded that the Redlich-Peterson model fit best for the adsorption data.
-
Key words:
- diatomite /
- organic modification /
- adsorption /
- organochlorine pesticides
-
表 1 表面活性剂和有机氯农药(DDTs)的相关理化性质
Table 1. The related physicochemical properties of DDTs and surfactants
化合物名称 分子式 摩尔质量(g/mol) 溶解度(mg/L) 辛醇分配系数(logKow) p, p'-DDE C14H8Cl14 318.03 0.12a 5.70b p, p'-DDT C14H9C15 354.49 0.025a 6.36b p, p'-DDD C14H10C14 320.05 0.090a 5.50b CTMAB C16H33(CH3)3NBr 364.45 13 000 -0.48 注:a.Howard and Meylan(1997);b. Schwarzenbach et al.(2003) ;T=25±0.5 ℃,pH=7.0.表 2 改性硅藻土的表面结构特征
Table 2. Main surface texture characteristics of organo-diatomite
孔参数 DS DSY CDSY CDSY-5 SBET(m2/g) 0.433 2 0.713 8 0.603 8 0.585 6 Vmi(cm3/g) 0.001 148 0.000 353 0.000 555 0.000 585 表 3 不同等温曲线的各项指数和相关系数
Table 3. Adjustable parameters and correlation coefficients for various isotherms
Parameters R2 K M β p, p'-DDD Linear 0.98 3.92 -9.48 Freundlich 0.95 0.72 1.66 Langmuir 0.90 3.85E-10 7.79E9 Redlich-Peterson 0.99 96.7 0.005 2 3.12 p, p'-DDE Linear 0.97 3.97 -22.81 Freundlich 0.98 0.74 1.42 Langmuir 0.92 3.41E-9 9.29E8 Redlich-Peterson 0.99 7 720.28 0.000 09 1.43 p, p'-DDT Linear 0.99 4.01 -27.27 Freundlich 0.98 0.67 1.43 Langmuir 0.93 3.910 9E-10 7.99E9 Redlich-Peterson 0.99 488.95 0.000 61 1.74 -
[1] Chen, W., Jing, M.M., Bu, J.W., et al., 2011. Organochlorine pesticides in the surface water and sediments from the Peacock River Drainage basin in Xinjiang, China: a study of an arid zone in Central Asia. Environmental Monitoring and Assessment, 177(1-4): 1-21. doi: 10.1007/s10661-010-1613-2 [2] Daković, A., Tomašević-Čanović, M., Rottinghaus, G., et al., 2003. Adsorption of ochratoxin A on octadecyldimethyl benzyl ammonium exchanged-clinoptilolite-heulandite tuff. Colloids and Surfaces, B: Biointerfaces, 30(1-2): 157-165. doi: 10.1016/S0927-7765(03)00067-5 [3] El-Shahawi, M.S., Hamza, A., Bashammakh, A., et al., 2010. An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta, 80(5): 1587-1597. doi: 10.1016/j.talanta.2009.09.055 [4] Feng, K., Yu, B.Y., Ge, D.M., et al., 2003. Organo-chlorine pesticide (DDT and HCH) residues in the Taihu Lake region and its movement in soil-water system Ⅰ. Field survey of DDT and HCH residues in ecosystem of the region. Chemosphere, 50(6): 683-687. doi: 10.1016/S0045-6535(02)00204-7 [5] Howard, P.H., Meylan, W.M., 1997. Handbook of physical properties of organic chemicals. CRC Press, Lewis Publishers, Boca Raton. [6] Imo, T.S., Hirosawa, E., Ali, S.M., et al., 2006. Persistent organochlorine pesticides (OCPs) in river waters of southern part of Okinawa Island, Japan. Geochimica et Cosmochimica Acta, 70(18): A276. doi: 10.1016/j.gca.2006.06.560 [7] Lee, S.Y., Kim, S.J., 2002. Adsorption of naphthalene by HDTMA modified kaolinite and halloysite. Appl. Clay Sci. , 22(1-2): 55-63. doi: 10.1016/S0169-1317(02)00113-6 [8] Lemić, J., Kovačević, D., Tomašević-Čanović, M., et al., 2006. Removal of atrazine, lindane and diazinone from water by organo-zeolites. Water Research, 40(5): 1079-1085. doi: 10.1016/j.watres.2006.01.001 [9] Li, K.Q., Zheng, Z., Luo, X.Z., 2010. Adsorption behavior and influence factors of p-nitroaniline on high Surface area activated carbons prepared from plant stems. Environmental Science, 31(8): 1877-1883 (in Chinese with English abstract). http://www.oalib.com/paper/1588579 [10] Li, Z.H., Willms, C.A., Kniola, K., 2003. Removal of anionic contaminants using surfactant-modified palygorskite and sepiolite. Clays and Clay Miner. , 51(4): 445-451. doi: 10.1346/CCMN.2003.0510411 [11] McNeil-Watson, F., Tscharnuter, W., Miller, J., 1998. A new instrument for the measurement of very small electrophoretic mobilities using phase analysis light scattering(PALS). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 140(1-3): 53-57. doi: 10.1016/S0927-7757(97)00267-7 [12] Roy, M.T., Gallardo, M., Estelrich, J., 1998. Influence of size on electrokinetic behavior of phosphatidylserine and phosphatidylethanolamine lipid vesicles. Journal of Colloid and Interface Science, 206(2): 512-517. doi: 10.1016/jcis.1998.5715 [13] Sanchez-Martin, M.J., Rodriguez-Cruz, M.S., Andrades, M.S., et al., 2006. Efficiency of different clay minerals modified with a cationic surfactant in the adsorption of pesticides: influence of clay type and pesticide hydrophobicity. Applied Clay Science, 31(3-4): 216-228. doi: 10.1016/j.clay.2005.07.008 [14] Schwarzenbach, R.P., Gschwend, P.M., Imboden, D.M., 2003. Environmental organic chemistry, 3ed. . Wiley-Interscience, New York. [15] Wang, P., Keller, A.A., 2008. Partitioning of hydrophobic organic compounds within soil-water-surfactant systems. Water Research, 42(8-9): 2093-2101. doi: 10.1016/j.watres.2007.11.015 [16] Wang, X.H., Wang, W.X., 2005. Uptake, absorption efficiency and elimination of DDT in marine phytoplankton, copepods and fish. Environmental Pollution, 136(3): 453-464. doi: 10.1016/j.envpol.2005.01.004 [17] Xu, Y., Ge, F., Tao, N.G., et al., 2009. Growth inhibition and mechanism of cetyltrimethyl ammonium chloride on Chlorella vulgaris. Environmental Science, 30(6): 1767-1772 (in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/19662866 [18] Zhang, C.X., Wang, Y.X., Qi, S.H., et al., 2008. Adsorption mechanisms between dissolved organic matter and endocrine disruptors from Landfill leachate. Earth Science—Journal of China University of Geosciences, 33(3): 399-404 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.053 [19] Zhang, Z.L., Huang, J., Yu, G., et al., 2004. Occurrence of PAHs, PCBs and organochlorine pesticides in the Tonghui River of Beijing, China. Environmental Pollution, 130(2): 249-261. doi: 10.1016/j.envpol.2003.12.002 [20] 李坤权, 郑正, 罗兴章, 2010. 高比表面植物基活性炭吸附水中对硝基苯胺的性能及影响因素. 环境科学, 31(8): 1877-1883. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201008029.htm [21] 许银, 葛飞, 陶能国, 等, 2009. 十六烷基三甲基氯化铵抑制小球藻生长的效应及作用机制. 环境科学, 30(6): 1767-1772. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200906037.htm [22] 张彩香, 王焰新, 祁士华, 等, 2008. 垃圾渗滤液中溶解有机质与内分泌干扰物的吸附机理. 地球科学——中国地质大学学报, 33(3): 399-404. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200803016.htm