Hydro-Geochemistry Implications of Evolution of Pore Water in Low-Penetrability Aquifer and Significance of Paleoclimate
-
摘要: 地下水开采、弱透水层释水, 以及污染物迁移转化、高危废物深埋选址等水文地质和工程地质活动中, 弱透水层的作用越来越受到重视.了解弱透水层孔隙水的演化特征是认识弱透水层作用的首要问题.采用机械压榨法提取了曹妃甸地区某钻孔0~100 m粘性土孔隙水, 对孔隙水化学特征进行了分析.结果显示钻孔粘性土孔隙水呈碱性, 总溶解固体为7.26~26.89 g/L, 从浅到深逐渐减小; 陆相沉积层Cl/Br比趋向无穷大, 而海相沉积层仅为279~289.分析得出弱透水层孔隙水基本为岩层沉积水, 陆相和海相沉积层孔隙水分别显示出淡水和海水起源特征, 没有后期海水入侵影响迹象; Cl-、Na+变化趋势主要受蒸发浓缩作用影响, SO42-受硫酸盐的还原作用和石膏的溶解作用共同控制, Ca2+、Na+、K+还受到沉积过程中阳离子交换与吸附作用影响; 由δ18O重建晚更新世古气温为5.21~5.81 ℃, 浅部40 m以内计算的气温偏高是由于全新世气候变暖、孔隙水向下扩散迁移混合的影响.Abstract: The low-penetrability aquifer plays an important role in hydrogeology and engineering geology activities, including groundwater exploitation, porewater release from aquitard, migration and transformation of pollutants, and reposition of high radioactive waste. For understanding the low-penetrability aquifer, it's important to investigate the evolution of pore water. In this paper, pore water was extracted by mechanical squeeze in a bore of Caofeidian with a depth of 0-100 m. The analysis of porewater indicates that the pore water is alkaline, and the total dissolved solid is between 7.26 and 26.89 g/L, decreasing with depth; and Cl/Br in continental sediment tends to infinity, while that in marine sediment is 279-280. It can be concluded that the pore water is sedimentary water revealing the freshwater and seawater characteristics in continental and marine sediment respectively with no clear signs of modern seawater intrusion. The trend of Cl-, Na+ is dominated by evaporation; SO42- is controlled both by sulfate reduction and gypsum dissolution; cation exchange and adsorption mainly influence Ca2+, K+ and Na+. The reconstruction of Late Pleistocene temperature is 5.21-5.81 ℃ using δ18O, with much higher temperatures calculated by shallow data within 40 m attributed to mixing and diffusion of modern pore water.
-
Key words:
- low-penetrability aquifer /
- pore water /
- geochemistry /
- oxygen and hydrogen isotope /
- hydrogeology
-
表 1 孔隙水主要离子浓度
Table 1. Major solute concentration of porewater
样品编号 深度(m) TDS pH Cl- Br- SO42- HCO3- Ca2+ Fe3+ K+ Mg2+ Na+ Sr2+ C1 16.2 26.89 5.30 16 827 - 96.9 32.95 721.4 55.50 389.9 769.1 7 979 10.70 C2 23.4 25.86 8.24 16 422 45.7 444.5 560.16 426.3 1.20 268.5 826.9 7 124 6.80 C3 28.7 25.08 7.75 15 382 - 711.2 247.13 523.9 2.30 128.4 852.1 7 309 9.40 C4 33.3 24.92 7.66 15 013 3.2 1 259 296.56 521.7 0.70 47.4 836.7 7 078 12.30 C5 37.6 23.55 7.97 14 843 29.1 1 079 243.84 1 159 -- 39.4 1 034 5 190 23.10 C6 43.5 20.70 8.35 12 050 16.9 1 921 382.23 404.7 0.90 46.2 954.6 5 082 13.70 C7 49.4 15.18 8.00 9 360 3.5 923.9 197.70 573.2 0.70 51.2 829.0 3 297 10.40 C8 53.5 13.76 8.05 7 345 - 1 696 494.26 296.8 0.60 57.4 642.9 3445 7.10 C9 68.1 9.81 7.79 5 876 - 337.2 276.79 459.5 0.70 85.9 346.5 2476 6.30 C10 74.4 8.04 8.05 4 799 - 289.6 362.46 234.0 0.60 36.2 288.7 2174 4.40 C11 78.5 7.26 8.48 4 049 - 532.3 790.82 76.8 0.90 40.4 178.2 2461 2.10 C12 88.2 8.81 7.65 4 988 17.4 314.7 335.55 156.1 0.55 19.25 348.9 2 682 4.60 C13 93.3 9.71 8.40 5 108 18.3 582.6 416.42 160.2 0.60 21.95 391.9 3 097 4.15 C14 97.2 10.27 8.48 4 688 16.2 2 020 581.62 247.0 - 25.2 399.5 3 019 5.40 注:表中各离子单位为mg/L,TDS单位为g/L. 表 2 氘氧同位素测试结果
Table 2. The results of oxygen and hydrogen isotope
深度(m) 16.2 28.7 33.3 43.5 49.4 δ18O(‰) -3.01 -5.49 -4.62 -7.54 -8.94 δD(‰) -12.9 -29.9 -24.7 -46.7 -56.8 深度(m) 53.5 88.2 93.3 97.2 渤海海水 δ18O(‰) -9.56 -9.85 -8.55 -9.98 -0.99 δD(‰) -61.4 -64.4 -56.3 -67.7 -10.7 表 3 特征离子比及矿物饱和指数
Table 3. Typical ion ratio and saturation index
深度(m) Cl/Br Sr/Ba SO4/Cl Ca/Cl γ(Na/Cl) SIcal SIdolo SIgyp 16.2 ∝ 4.12 0.006 0.043 0.73 -2.27 -4.11 -1.74 23.4 359.81 8.63 0.027 0.026 0.67 1.53 3.74 -1.29 28.7 ∝ 26.38 0.046 0.034 0.73 0.82 2.25 -1 33.3 4710.78 38.40 0.084 0.035 0.73 0.82 2.22 -0.76 37.6 510.07 67.16 0.073 0.078 0.54 1.33 3 -0.51 43.5 709.65 79.72 0.159 0.034 0.65 1.43 3.6 -0.66 49.4 2713 47.65 0.099 0.061 0.54 1.03 2.6 -0.74 53.5 ∝ 39.66 0.231 0.040 0.72 1.22 3.14 -0.72 68.1 ∝ 18.28 0.057 0.078 0.65 1.01 2.27 -1.09 74.4 ∝ 13.34 0.060 0.049 0.70 1.12 2.7 -1.36 78.5 ∝ 8.21 0.131 0.019 0.94 1.36 3.45 -1.56 88.2 286.89 9.30 0.063 0.031 0.83 0.53 1.78 -1.53 93.3 279.50 9.91 0.114 0.031 0.94 1.28 3.33 -1.31 97.2 289.96 31.25 0.431 0.053 0.99 1.61 3.79 -0.53 注:SIcal、SIdolo、SIgyp分别为方解石、白云石、石膏的饱和指数,通过PHREEQC软件的模拟计算值;γ为摩尔比. -
[1] An, F.T., Gao, S.M., Li, Y.F., 1982. A research on depositional environment of delta by analyzed method of trace elements in Luanhe River. Transactions of Oceanology and Limnology, 2: 24-31 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-hyfb198202004.htm [2] An, Z. S, Wu, X.H., Lu, Y.C., et al., 1990. A preliminary study on the paleoenvironment change of China during the last 20 000 years. In: Liu, D.S., ed., Quaternary geology and global change. Science Press, Beijing, 1-26 (in Chinese). [3] Bufflap, S.E., Allen, H.E., 1995. Sediment pore water collection methods for metal analysis: a review. Wat. Res., 29(1): 165-177. doi: 10.1016/0043-1354(94)E0105-F. [4] Chen, S.Q., Lu, Q.G., 1995. The development and application of the squeezing instrument for sampling soil water. Eco-Agriculture Research, 3(4): 67-69 (in Chinese with English abstract). http://www.jourlib.org/paper/1505793 [5] Chen, Z.Y., 2001. Groundwater resources evolution based on paleoenvironmental information from groundwater system in the North China plain (Dissertation). Jilin University, Changchun (in Chinese). [6] Chen, Z.Y., Zhang, G.H., Nie, Z.L., et al., 2002. Groundwater isotopic stratification and its implications in northern China. Earth Science—Journal of China University of Geosciences, 27(1): 97-104 (in Chinese with English abstract). http://www.researchgate.net/publication/284470683_Groundwater_isotopic_stratification_and_its_implications_in_Northern_China [7] Cheng, S.H., Lu, H.F., 2005. Techniques for marine sediment pore-water sampling. Rock and Mineral Analysis, 24(2): 102-104 (in Chinese with English abstract). http://www.researchgate.net/publication/305375438_Techniques_for_marine_sediment_pore-water_sampling [8] Dansgaard, W., 1964. Stable isotopes in precipitation. Tellus, 16: 436-468. [9] Edwards, T.W.D., Wolfe, B.B., MacDonald, G.M., 1996. Influence of changing atmospheric circulation on precipitation delta 18O-temperature relations in Canada during the Holocene. Quaternary Research, 46(3): 211-218. doi: 10.1006/qres.1996.0061 [10] Ha, C.Y., Wang, R.J., 1996. The information of about sea level changes inferred from groundwater. Earth Science Frontiers, 3(1-2): 177-181 (in Chinese with English abstract). [11] Han, Y.S., Meng, G.L., Wang, S.Q., et al., 1996. Quaternary brine along the coast of northern China. Science Press, Beijing (in Chinese). [12] Hendry, M.J., Wassenaar, L.I., 1999. Implications of the distribution of δD in pore waters for groundwater flow and the timing of geologic events in a thick aquitard system. Water Resources Research, 35(6): 1751-1760. doi: 10.1029/1999WR900046 [13] Hendry, M.J., Woodbury, A.D., 2007. Clay Aquitards as archives of Holocene paleoclimate: δ18O and thermal profiling. Groundwater, 45(6): 683-691. doi: 10.1111/j.1745-6584.2007.00354_x [14] Hendry, M.J., Wassenaar, L.I., 2000. Controls on the distribution of major ions in pore waters of a thick surficial aquitard. Water Resources Research, 36(2): 503-513. doi: 10.1029/1999WR900310 [15] Kelln, C.J., Wassenaar, L.I., Hendry, M.J., 2001. Stable isotopes (δ18O, δ2H) of pore water in clay-rich aquitards: a comparison and evaluation of measurement techniques. Ground Water Monitoring & Remediation, 21(2): 108-116 doi: 10.1111/j.1745-6592.2001.tb00306_x [16] Langmuir, D., 1997. Aqueous environmental geochemistry. Prentice-Hall, Englewood Cliffs, N.J. [17] Li, L., Li, C.C., 2008. Analysis on regional geological environment in Caofeidian industrial area of Tangshan. Resources and Industries, 10(1): 25-27 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZIYU200801009.htm [18] Liao, X.G., Zhang, X.J., 1984. Geochemistry of interstitial water in Bohai bay. Acta Oceanological Sinica. 5(6): 615-625 (in Chinese with English abstract). [19] Liu, S.M., Zhang, J., 1999. Several sampling techniques for sediment porewater. Marine Environmental Science, 18(2): 61-66 (in Chinese with English abstract). [20] Lopes, I., Ribeiro, R., 2005. Optimization of a pressurization methodology for extracting pore-water. Chemosphere, 61(10): 1505-1511. doi: 10.1016/j.chemosphere.2005.04.041 [21] Ma, L., Yu, H.J., Wang, S.K., et al., 2006. Late Quaternary environmental evolution in the Bohai Sea area and formation of Quaternary subsurface brine. Coastal Engineering, 25(4): 1-6 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HAGC200604000.htm [22] Oploo, P.V., White, I., Macdonald, B.C.T., et al., 2008. The use of peepers to sample pore water in acid sulphate soils. European Journal of Soil Sciences, 59(4): 762-770. doi: 10.1111/j.1365-2389.2008.01020_x [23] Racchetti, E., Bartoli, M., Ribaudo, C., et al., 2010. Short term changes in pore water chemistry in river sediments during the early colonization by Vallisneria spiralis. Hydrobiologia, 652(1): 127-137. doi: 10.1007/s10750-010-03246 [24] Sacchi, E., Michelot, J.L., Pitsch, H., et al., 2001. Extraction of water and solutes from argillaceous rocks for geochemical characterisation: methods, processes, and current understanding. Hydrogeology Journal, 9(1): 17-33. doi: 10.1007/s100400000113 [25] Shaw, J.R., Hendry, M.J., 1998. Hydrogeology of a thick clay till and Cretaceous clay sequence, Saskatchewan, Canada. Canadian Geotechnical Journal, 35(6): 1-12. doi: 10.1139/198-060 [26] Shen, Z.L., Zhu, W.H., Zhong, Z.S., 1999. Hydrogeochemical basis (2nd edition). Geological Publishing House, Beijing (in Chinese). [27] Tang, M.G., Wang, H.J., 1986. The significance and application of soil pore water. Investigation Science and Technology, 5: 1-6 (in Chinese with English abstract). [28] Tao, C.F., 2008. Research on the characteristics of marine engineering geology and the depth of pile penetration in Caofeidian shoal (Dissertation). Ocean University of China Qingdao (in Chinese). [29] Waber, H.N., Smellie, J.A.T., 2008. Characterisation of pore water in crystalline rocks. Applied Geochemistry, 23(7): 1834-1861. doi: 10.1016/j.apgeochem.2008.02.007 [30] Wang, H.C., Sun, B., Yin, G., et al., 1991. Introduction to isotope hydrogeology. Geological Publishing House, Beijing (in Chinese). [31] Wang, Y., 2000. Evolution sequences of palaeovegetation and palaeoclimate in the Caofeidian area since the last stage of the late Pleistocene epoch. Marine Geology and Quaternary Geology, 20(2): 87-92 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200002017.htm [32] Wang, Y.P., Lin, J.X., Fan, S.Q., et al., 1994. Chemistry of pore water in northern South China Sea and its prospecting significance. Science and Technology Press, Beijing (in Chinese). [33] Yan, X.X., Huo, J.L., 2007. Analysis for characteristics of physiognomy and sediment in offshore area of Hebei Caofeidian. Journal of Waterway and Harbor, 3(28): 164-168 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDGK200703002.htm [34] Yao, T.D., 1997. Climatic and environmental record in the past about 2000 years from the Guliya ice core. Quaternary Sciences, 1: 52-61 (in Chinese with English abstract). http://www.researchgate.net/publication/285839939_Climatic_and_environmental_record_in_the_past_about_2000_years_from_the_Guliya_ice_core [35] Zhang, W.J., Sun, X.M., Liu, F.T., et al., 2010. Application of R mode analysis on chemical characters and influential factors of Quaternary groundwater in Caofeidian area. Safety and Environmental Engineering, 17(1): 1-5 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dzktaq201001001 [36] Zhang, Z.H., Shi, D.H., Shen, Z.L., et al., 1997. Evolution and development of groundwater environment in North China Plain under human activities. Acta Geoscientia Sinica, 18(4): 337-344 (in Chinese with English abstract). [37] Zhao, S.L., Yang, G.F., Cang, S.X., et al., 1978. On the marine stratigraphy and coastlines of the western coast of the gulf of Bohai. Oceanologia et Limnologia Sinica, 9(1): 15-25 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYFZ197801001.htm [38] 安凤桐, 高善明, 李元芳, 1982. 用微量元素分析法研究滦河三角洲沉积环境. 海洋湖沼通报, 2: 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFB198202004.htm [39] 安芷生, 吴锡浩, 卢演俦, 等, 1990. 最近2万年中国环境变迁研究. 见: 刘东生主编, 黄土·第四纪地质·全球变化. 北京: 科学出版社, 1-26. [40] 陈世庆, 鲁全国, 1995. 土壤水压榨取样仪的研制及其应用. 生态农业研究, 3(4): 67-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN199504018.htm [41] 陈宗宇, 2001. 从华北平原地下水系统中古环境信息研究地下水资源演化(博士学位论文). 长春: 吉林大学. [42] 陈宗宇, 张光辉, 聂振龙, 等, 2002. 中国北方第四系地下水同位素分层及其指示意义. 地球科学——中国地质大学学报, 27(1): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200201020.htm [43] 程思海, 陆红锋, 2005. 海洋沉积物孔隙水的制备方法. 岩矿测试, 24(2): 102-104. doi: 10.3969/j.issn.0254-5357.2005.02.005 [44] 哈承佑, 王瑞久, 1996. 地下水中蕴藏的海平面变化信息. 地学前缘, 3(1-2): 177-181. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY602.008.htm [45] 韩有松, 孟广兰, 王少青, 1996. 中国北方沿海第四纪地下卤水. 北京: 科学出版社. [46] 李琳, 李昌存, 2008. 唐山曹妃甸工业区区域地质环境分析. 资源与产业, 10(1): 25-27. doi: 10.3969/j.issn.1673-2464.2008.01.008 [47] 廖先贵, 张湘君, 1984. 渤海湾间隙水的地球化学特征. 海洋学报, 5(6): 615-625. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC198405005.htm [48] 刘素美, 张经, 1999. 沉积物间隙水的几种制备方法. 海洋环境科学, 18(2): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ199902012.htm [49] 马龙, 于洪军, 王树昆, 等, 2006. 渤海地区晚第四纪环境演化与第四纪滨海相地下卤水的形成. 海岸工程, 25(4): 1-6. doi: 10.3969/j.issn.1002-3682.2006.04.001 [50] 沈照理, 朱宛华, 钟佐燊, 1999. 水文地球化学基础(第二版). 北京: 地质出版社. [51] 汤鸣皋, 王亨君, 1986. 岩土孔隙溶液成分研究的意义及应用探讨. 勘察科学技术, 5: 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX198605000.htm [52] 陶常飞, 2008. 曹妃甸浅滩海洋工程地质特征及插桩深度研究(硕士学位论文). 青岛: 中国海洋大学. [53] 汪蕴璞, 林锦璇, 范时清, 等, 1994. 南海北部海域软泥水化学及其找矿意义. 北京: 北京科学技术出版社. [54] 王恒纯, 孙杉, 尹观, 等, 1991. 同位素水文地质概论. 北京: 地质出版社. [55] 王艳, 2000. 渤海湾曹妃甸晚更新世末期以来古植被与古气候演变序列. 海洋地质与第四纪地质, 20(2): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200002017.htm [56] 闫新兴, 霍吉亮, 2007. 河北曹妃甸近海区地貌与沉积特征分析. 水道港口, 3(28): 164-168. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGK200703002.htm [57] 姚檀栋, 1997. 古里雅冰芯近2000年来气候环境变化记录. 第四纪研究, 1: 52-61. doi: 10.3321/j.issn:1001-7410.1997.01.007 [58] 张伟敬, 孙晓明, 柳富田, 等, 2010. 曹妃甸地区地下水水化学特征及影响因素的R型因子分析. 安全与环境工程, 17(1): 1-5. doi: 10.3969/j.issn.1671-1556.2010.01.001 [59] 张宗祜, 施德鸿, 沈照理, 等, 1997. 人类活动影响下华北平原地下水环境的演化与发展. 地球学报, 18(4): 337-344. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB704.000.htm [60] 赵松龄, 杨光复, 苍树溪, 等, 1978. 关于渤海湾西岸海相地层与海岸线问题. 海洋与湖沼, 9(1): 15-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ197801001.htm