• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    水化学揭示的弱透水层孔隙水演化特征及其古气候指示意义

    李静 梁杏 毛绪美 王聪 柳富田

    李静, 梁杏, 毛绪美, 王聪, 柳富田, 2012. 水化学揭示的弱透水层孔隙水演化特征及其古气候指示意义. 地球科学, 37(3): 612-620. doi: 10.3799/dqkx.2012.070
    引用本文: 李静, 梁杏, 毛绪美, 王聪, 柳富田, 2012. 水化学揭示的弱透水层孔隙水演化特征及其古气候指示意义. 地球科学, 37(3): 612-620. doi: 10.3799/dqkx.2012.070
    LI Jing, LIANG Xing, MAO Xu-mei, WANG Cong, LIU Fu-tian, 2012. Hydro-Geochemistry Implications of Evolution of Pore Water in Low-Penetrability Aquifer and Significance of Paleoclimate. Earth Science, 37(3): 612-620. doi: 10.3799/dqkx.2012.070
    Citation: LI Jing, LIANG Xing, MAO Xu-mei, WANG Cong, LIU Fu-tian, 2012. Hydro-Geochemistry Implications of Evolution of Pore Water in Low-Penetrability Aquifer and Significance of Paleoclimate. Earth Science, 37(3): 612-620. doi: 10.3799/dqkx.2012.070

    水化学揭示的弱透水层孔隙水演化特征及其古气候指示意义

    doi: 10.3799/dqkx.2012.070
    基金项目: 

    国家重点基础研究发展计划“973”项目 2010CB428802

    国家自然科学青年基金项目 40602031

    详细信息
      作者简介:

      李静(1985-), 女, 博士研究生, 从事水文地质及水文地球化学研究.E-mail: siweijingchu@163.com

      通讯作者:

      梁杏, E-mail: xliang@cug.edu.cn

    • 中图分类号: X641.3

    Hydro-Geochemistry Implications of Evolution of Pore Water in Low-Penetrability Aquifer and Significance of Paleoclimate

    • 摘要: 地下水开采、弱透水层释水, 以及污染物迁移转化、高危废物深埋选址等水文地质和工程地质活动中, 弱透水层的作用越来越受到重视.了解弱透水层孔隙水的演化特征是认识弱透水层作用的首要问题.采用机械压榨法提取了曹妃甸地区某钻孔0~100 m粘性土孔隙水, 对孔隙水化学特征进行了分析.结果显示钻孔粘性土孔隙水呈碱性, 总溶解固体为7.26~26.89 g/L, 从浅到深逐渐减小; 陆相沉积层Cl/Br比趋向无穷大, 而海相沉积层仅为279~289.分析得出弱透水层孔隙水基本为岩层沉积水, 陆相和海相沉积层孔隙水分别显示出淡水和海水起源特征, 没有后期海水入侵影响迹象; Cl-、Na+变化趋势主要受蒸发浓缩作用影响, SO42-受硫酸盐的还原作用和石膏的溶解作用共同控制, Ca2+、Na+、K+还受到沉积过程中阳离子交换与吸附作用影响; 由δ18O重建晚更新世古气温为5.21~5.81 ℃, 浅部40 m以内计算的气温偏高是由于全新世气候变暖、孔隙水向下扩散迁移混合的影响.

       

    • 图  1  研究区地理位置

      Fig.  1.  Location of study site

      图  2  压榨仪示意

      1.顶盖及活塞;2.圆柱筒体;3.过滤网及过滤膜;4.底座;5.导水孔

      Fig.  2.  Scheme of the pressurizing device

      图  3  粘性土孔隙水氢氧同位素关系

      Fig.  3.  Polt of porewater δD versus δ18O

      图  4  特征离子比垂向变化曲线

      圆点和方块表示采样位置;空心圆点:Cl/Br > 6 000;A.河湖相;B.海相

      Fig.  4.  Typical ion ratio along the direction of depth

      图  5  δ18O垂向变化曲线

      Fig.  5.  δ18O versus depth

      表  1  孔隙水主要离子浓度

      Table  1.   Major solute concentration of porewater

      样品编号 深度(m) TDS pH Cl- Br- SO42- HCO3- Ca2+ Fe3+ K+ Mg2+ Na+ Sr2+
      C1 16.2 26.89 5.30 16 827 - 96.9 32.95 721.4 55.50 389.9 769.1 7 979 10.70
      C2 23.4 25.86 8.24 16 422 45.7 444.5 560.16 426.3 1.20 268.5 826.9 7 124 6.80
      C3 28.7 25.08 7.75 15 382 - 711.2 247.13 523.9 2.30 128.4 852.1 7 309 9.40
      C4 33.3 24.92 7.66 15 013 3.2 1 259 296.56 521.7 0.70 47.4 836.7 7 078 12.30
      C5 37.6 23.55 7.97 14 843 29.1 1 079 243.84 1 159 -- 39.4 1 034 5 190 23.10
      C6 43.5 20.70 8.35 12 050 16.9 1 921 382.23 404.7 0.90 46.2 954.6 5 082 13.70
      C7 49.4 15.18 8.00 9 360 3.5 923.9 197.70 573.2 0.70 51.2 829.0 3 297 10.40
      C8 53.5 13.76 8.05 7 345 - 1 696 494.26 296.8 0.60 57.4 642.9 3445 7.10
      C9 68.1 9.81 7.79 5 876 - 337.2 276.79 459.5 0.70 85.9 346.5 2476 6.30
      C10 74.4 8.04 8.05 4 799 - 289.6 362.46 234.0 0.60 36.2 288.7 2174 4.40
      C11 78.5 7.26 8.48 4 049 - 532.3 790.82 76.8 0.90 40.4 178.2 2461 2.10
      C12 88.2 8.81 7.65 4 988 17.4 314.7 335.55 156.1 0.55 19.25 348.9 2 682 4.60
      C13 93.3 9.71 8.40 5 108 18.3 582.6 416.42 160.2 0.60 21.95 391.9 3 097 4.15
      C14 97.2 10.27 8.48 4 688 16.2 2 020 581.62 247.0 - 25.2 399.5 3 019 5.40
      注:表中各离子单位为mg/L,TDS单位为g/L.
      下载: 导出CSV

      表  2  氘氧同位素测试结果

      Table  2.   The results of oxygen and hydrogen isotope

      深度(m) 16.2 28.7 33.3 43.5 49.4
      δ18O(‰) -3.01 -5.49 -4.62 -7.54 -8.94
      δD(‰) -12.9 -29.9 -24.7 -46.7 -56.8
      深度(m) 53.5 88.2 93.3 97.2 渤海海水
      δ18O(‰) -9.56 -9.85 -8.55 -9.98 -0.99
      δD(‰) -61.4 -64.4 -56.3 -67.7 -10.7
      下载: 导出CSV

      表  3  特征离子比及矿物饱和指数

      Table  3.   Typical ion ratio and saturation index

      深度(m) Cl/Br Sr/Ba SO4/Cl Ca/Cl γ(Na/Cl) SIcal SIdolo SIgyp
      16.2 4.12 0.006 0.043 0.73 -2.27 -4.11 -1.74
      23.4 359.81 8.63 0.027 0.026 0.67 1.53 3.74 -1.29
      28.7 26.38 0.046 0.034 0.73 0.82 2.25 -1
      33.3 4710.78 38.40 0.084 0.035 0.73 0.82 2.22 -0.76
      37.6 510.07 67.16 0.073 0.078 0.54 1.33 3 -0.51
      43.5 709.65 79.72 0.159 0.034 0.65 1.43 3.6 -0.66
      49.4 2713 47.65 0.099 0.061 0.54 1.03 2.6 -0.74
      53.5 39.66 0.231 0.040 0.72 1.22 3.14 -0.72
      68.1 18.28 0.057 0.078 0.65 1.01 2.27 -1.09
      74.4 13.34 0.060 0.049 0.70 1.12 2.7 -1.36
      78.5 8.21 0.131 0.019 0.94 1.36 3.45 -1.56
      88.2 286.89 9.30 0.063 0.031 0.83 0.53 1.78 -1.53
      93.3 279.50 9.91 0.114 0.031 0.94 1.28 3.33 -1.31
      97.2 289.96 31.25 0.431 0.053 0.99 1.61 3.79 -0.53
      注:SIcalSIdoloSIgyp分别为方解石、白云石、石膏的饱和指数,通过PHREEQC软件的模拟计算值;γ为摩尔比.
      下载: 导出CSV
    • [1] An, F.T., Gao, S.M., Li, Y.F., 1982. A research on depositional environment of delta by analyzed method of trace elements in Luanhe River. Transactions of Oceanology and Limnology, 2: 24-31 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-hyfb198202004.htm
      [2] An, Z. S, Wu, X.H., Lu, Y.C., et al., 1990. A preliminary study on the paleoenvironment change of China during the last 20 000 years. In: Liu, D.S., ed., Quaternary geology and global change. Science Press, Beijing, 1-26 (in Chinese).
      [3] Bufflap, S.E., Allen, H.E., 1995. Sediment pore water collection methods for metal analysis: a review. Wat. Res., 29(1): 165-177. doi: 10.1016/0043-1354(94)E0105-F.
      [4] Chen, S.Q., Lu, Q.G., 1995. The development and application of the squeezing instrument for sampling soil water. Eco-Agriculture Research, 3(4): 67-69 (in Chinese with English abstract). http://www.jourlib.org/paper/1505793
      [5] Chen, Z.Y., 2001. Groundwater resources evolution based on paleoenvironmental information from groundwater system in the North China plain (Dissertation). Jilin University, Changchun (in Chinese).
      [6] Chen, Z.Y., Zhang, G.H., Nie, Z.L., et al., 2002. Groundwater isotopic stratification and its implications in northern China. Earth Science—Journal of China University of Geosciences, 27(1): 97-104 (in Chinese with English abstract). http://www.researchgate.net/publication/284470683_Groundwater_isotopic_stratification_and_its_implications_in_Northern_China
      [7] Cheng, S.H., Lu, H.F., 2005. Techniques for marine sediment pore-water sampling. Rock and Mineral Analysis, 24(2): 102-104 (in Chinese with English abstract). http://www.researchgate.net/publication/305375438_Techniques_for_marine_sediment_pore-water_sampling
      [8] Dansgaard, W., 1964. Stable isotopes in precipitation. Tellus, 16: 436-468.
      [9] Edwards, T.W.D., Wolfe, B.B., MacDonald, G.M., 1996. Influence of changing atmospheric circulation on precipitation delta 18O-temperature relations in Canada during the Holocene. Quaternary Research, 46(3): 211-218. doi: 10.1006/qres.1996.0061
      [10] Ha, C.Y., Wang, R.J., 1996. The information of about sea level changes inferred from groundwater. Earth Science Frontiers, 3(1-2): 177-181 (in Chinese with English abstract).
      [11] Han, Y.S., Meng, G.L., Wang, S.Q., et al., 1996. Quaternary brine along the coast of northern China. Science Press, Beijing (in Chinese).
      [12] Hendry, M.J., Wassenaar, L.I., 1999. Implications of the distribution of δD in pore waters for groundwater flow and the timing of geologic events in a thick aquitard system. Water Resources Research, 35(6): 1751-1760. doi: 10.1029/1999WR900046
      [13] Hendry, M.J., Woodbury, A.D., 2007. Clay Aquitards as archives of Holocene paleoclimate: δ18O and thermal profiling. Groundwater, 45(6): 683-691. doi: 10.1111/j.1745-6584.2007.00354_x
      [14] Hendry, M.J., Wassenaar, L.I., 2000. Controls on the distribution of major ions in pore waters of a thick surficial aquitard. Water Resources Research, 36(2): 503-513. doi: 10.1029/1999WR900310
      [15] Kelln, C.J., Wassenaar, L.I., Hendry, M.J., 2001. Stable isotopes (δ18O, δ2H) of pore water in clay-rich aquitards: a comparison and evaluation of measurement techniques. Ground Water Monitoring & Remediation, 21(2): 108-116 doi: 10.1111/j.1745-6592.2001.tb00306_x
      [16] Langmuir, D., 1997. Aqueous environmental geochemistry. Prentice-Hall, Englewood Cliffs, N.J.
      [17] Li, L., Li, C.C., 2008. Analysis on regional geological environment in Caofeidian industrial area of Tangshan. Resources and Industries, 10(1): 25-27 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZIYU200801009.htm
      [18] Liao, X.G., Zhang, X.J., 1984. Geochemistry of interstitial water in Bohai bay. Acta Oceanological Sinica. 5(6): 615-625 (in Chinese with English abstract).
      [19] Liu, S.M., Zhang, J., 1999. Several sampling techniques for sediment porewater. Marine Environmental Science, 18(2): 61-66 (in Chinese with English abstract).
      [20] Lopes, I., Ribeiro, R., 2005. Optimization of a pressurization methodology for extracting pore-water. Chemosphere, 61(10): 1505-1511. doi: 10.1016/j.chemosphere.2005.04.041
      [21] Ma, L., Yu, H.J., Wang, S.K., et al., 2006. Late Quaternary environmental evolution in the Bohai Sea area and formation of Quaternary subsurface brine. Coastal Engineering, 25(4): 1-6 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HAGC200604000.htm
      [22] Oploo, P.V., White, I., Macdonald, B.C.T., et al., 2008. The use of peepers to sample pore water in acid sulphate soils. European Journal of Soil Sciences, 59(4): 762-770. doi: 10.1111/j.1365-2389.2008.01020_x
      [23] Racchetti, E., Bartoli, M., Ribaudo, C., et al., 2010. Short term changes in pore water chemistry in river sediments during the early colonization by Vallisneria spiralis. Hydrobiologia, 652(1): 127-137. doi: 10.1007/s10750-010-03246
      [24] Sacchi, E., Michelot, J.L., Pitsch, H., et al., 2001. Extraction of water and solutes from argillaceous rocks for geochemical characterisation: methods, processes, and current understanding. Hydrogeology Journal, 9(1): 17-33. doi: 10.1007/s100400000113
      [25] Shaw, J.R., Hendry, M.J., 1998. Hydrogeology of a thick clay till and Cretaceous clay sequence, Saskatchewan, Canada. Canadian Geotechnical Journal, 35(6): 1-12. doi: 10.1139/198-060
      [26] Shen, Z.L., Zhu, W.H., Zhong, Z.S., 1999. Hydrogeochemical basis (2nd edition). Geological Publishing House, Beijing (in Chinese).
      [27] Tang, M.G., Wang, H.J., 1986. The significance and application of soil pore water. Investigation Science and Technology, 5: 1-6 (in Chinese with English abstract).
      [28] Tao, C.F., 2008. Research on the characteristics of marine engineering geology and the depth of pile penetration in Caofeidian shoal (Dissertation). Ocean University of China Qingdao (in Chinese).
      [29] Waber, H.N., Smellie, J.A.T., 2008. Characterisation of pore water in crystalline rocks. Applied Geochemistry, 23(7): 1834-1861. doi: 10.1016/j.apgeochem.2008.02.007
      [30] Wang, H.C., Sun, B., Yin, G., et al., 1991. Introduction to isotope hydrogeology. Geological Publishing House, Beijing (in Chinese).
      [31] Wang, Y., 2000. Evolution sequences of palaeovegetation and palaeoclimate in the Caofeidian area since the last stage of the late Pleistocene epoch. Marine Geology and Quaternary Geology, 20(2): 87-92 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200002017.htm
      [32] Wang, Y.P., Lin, J.X., Fan, S.Q., et al., 1994. Chemistry of pore water in northern South China Sea and its prospecting significance. Science and Technology Press, Beijing (in Chinese).
      [33] Yan, X.X., Huo, J.L., 2007. Analysis for characteristics of physiognomy and sediment in offshore area of Hebei Caofeidian. Journal of Waterway and Harbor, 3(28): 164-168 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDGK200703002.htm
      [34] Yao, T.D., 1997. Climatic and environmental record in the past about 2000 years from the Guliya ice core. Quaternary Sciences, 1: 52-61 (in Chinese with English abstract). http://www.researchgate.net/publication/285839939_Climatic_and_environmental_record_in_the_past_about_2000_years_from_the_Guliya_ice_core
      [35] Zhang, W.J., Sun, X.M., Liu, F.T., et al., 2010. Application of R mode analysis on chemical characters and influential factors of Quaternary groundwater in Caofeidian area. Safety and Environmental Engineering, 17(1): 1-5 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dzktaq201001001
      [36] Zhang, Z.H., Shi, D.H., Shen, Z.L., et al., 1997. Evolution and development of groundwater environment in North China Plain under human activities. Acta Geoscientia Sinica, 18(4): 337-344 (in Chinese with English abstract).
      [37] Zhao, S.L., Yang, G.F., Cang, S.X., et al., 1978. On the marine stratigraphy and coastlines of the western coast of the gulf of Bohai. Oceanologia et Limnologia Sinica, 9(1): 15-25 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYFZ197801001.htm
      [38] 安凤桐, 高善明, 李元芳, 1982. 用微量元素分析法研究滦河三角洲沉积环境. 海洋湖沼通报, 2: 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFB198202004.htm
      [39] 安芷生, 吴锡浩, 卢演俦, 等, 1990. 最近2万年中国环境变迁研究. 见: 刘东生主编, 黄土·第四纪地质·全球变化. 北京: 科学出版社, 1-26.
      [40] 陈世庆, 鲁全国, 1995. 土壤水压榨取样仪的研制及其应用. 生态农业研究, 3(4): 67-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN199504018.htm
      [41] 陈宗宇, 2001. 从华北平原地下水系统中古环境信息研究地下水资源演化(博士学位论文). 长春: 吉林大学.
      [42] 陈宗宇, 张光辉, 聂振龙, 等, 2002. 中国北方第四系地下水同位素分层及其指示意义. 地球科学——中国地质大学学报, 27(1): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200201020.htm
      [43] 程思海, 陆红锋, 2005. 海洋沉积物孔隙水的制备方法. 岩矿测试, 24(2): 102-104. doi: 10.3969/j.issn.0254-5357.2005.02.005
      [44] 哈承佑, 王瑞久, 1996. 地下水中蕴藏的海平面变化信息. 地学前缘, 3(1-2): 177-181. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY602.008.htm
      [45] 韩有松, 孟广兰, 王少青, 1996. 中国北方沿海第四纪地下卤水. 北京: 科学出版社.
      [46] 李琳, 李昌存, 2008. 唐山曹妃甸工业区区域地质环境分析. 资源与产业, 10(1): 25-27. doi: 10.3969/j.issn.1673-2464.2008.01.008
      [47] 廖先贵, 张湘君, 1984. 渤海湾间隙水的地球化学特征. 海洋学报, 5(6): 615-625. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC198405005.htm
      [48] 刘素美, 张经, 1999. 沉积物间隙水的几种制备方法. 海洋环境科学, 18(2): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ199902012.htm
      [49] 马龙, 于洪军, 王树昆, 等, 2006. 渤海地区晚第四纪环境演化与第四纪滨海相地下卤水的形成. 海岸工程, 25(4): 1-6. doi: 10.3969/j.issn.1002-3682.2006.04.001
      [50] 沈照理, 朱宛华, 钟佐燊, 1999. 水文地球化学基础(第二版). 北京: 地质出版社.
      [51] 汤鸣皋, 王亨君, 1986. 岩土孔隙溶液成分研究的意义及应用探讨. 勘察科学技术, 5: 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX198605000.htm
      [52] 陶常飞, 2008. 曹妃甸浅滩海洋工程地质特征及插桩深度研究(硕士学位论文). 青岛: 中国海洋大学.
      [53] 汪蕴璞, 林锦璇, 范时清, 等, 1994. 南海北部海域软泥水化学及其找矿意义. 北京: 北京科学技术出版社.
      [54] 王恒纯, 孙杉, 尹观, 等, 1991. 同位素水文地质概论. 北京: 地质出版社.
      [55] 王艳, 2000. 渤海湾曹妃甸晚更新世末期以来古植被与古气候演变序列. 海洋地质与第四纪地质, 20(2): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200002017.htm
      [56] 闫新兴, 霍吉亮, 2007. 河北曹妃甸近海区地貌与沉积特征分析. 水道港口, 3(28): 164-168. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGK200703002.htm
      [57] 姚檀栋, 1997. 古里雅冰芯近2000年来气候环境变化记录. 第四纪研究, 1: 52-61. doi: 10.3321/j.issn:1001-7410.1997.01.007
      [58] 张伟敬, 孙晓明, 柳富田, 等, 2010. 曹妃甸地区地下水水化学特征及影响因素的R型因子分析. 安全与环境工程, 17(1): 1-5. doi: 10.3969/j.issn.1671-1556.2010.01.001
      [59] 张宗祜, 施德鸿, 沈照理, 等, 1997. 人类活动影响下华北平原地下水环境的演化与发展. 地球学报, 18(4): 337-344. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB704.000.htm
      [60] 赵松龄, 杨光复, 苍树溪, 等, 1978. 关于渤海湾西岸海相地层与海岸线问题. 海洋与湖沼, 9(1): 15-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ197801001.htm
    • 加载中
    图(5) / 表(3)
    计量
    • 文章访问数:  223
    • HTML全文浏览量:  39
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2011-05-15
    • 网络出版日期:  2021-11-09
    • 刊出日期:  2012-05-01

    目录

      /

      返回文章
      返回