Pulsing Impregnated Bits with Low-Temperature Electroplating and Numerical Simulation for Bit Hydraulic Performance
-
摘要: 对于特别坚硬、研磨性强、互层频繁、含有石英和砾石夹层的地层, PDC钻头无法钻进, 机械钻速较低, 且破坏形式磨损快, 复合片容易破裂, 因此寿命很低.而牙轮钻头钻进也因为该类地层坚硬等缘故, 钻进效率很低, 并容易造成孔内掉牙轮等事故出现.针对这种问题, 研制了一种低温电铸孕镶脉冲石油钻头, 对钻头的流场进行了数值模拟.该钻头在现场的应用表明, 它具有寿命长、机械钻速高的特点.Abstract: For the strata with features of extreme hardness, strong abrasiveness, high frequency of interbedding, with quartz and gravel interlayer, PDC bit is barely to be employed as a result of low ROP and service life, embodied as fast wear of working layer, easily breaking of diamond compact, etc. The roller bit is not suit for this kind of strata either, and drilling accident might be caused by losing teeth. To solve this problem, the pulsing impregnated petroleum bit with low-temperature electroplating is developed, and numerical simulation is employed for the hydraulic performance of bit flow field. Field applications show that this kind of new bit enjoys the advantage of long service life and high ROP.
-
Key words:
- impregnated bit /
- jet flow /
- pulse /
- numerical simulation
-
表 1 低温电铸孕镶脉冲石油钻头和牙轮钻头使用效果对比
Table 1. Comparison of drilling effect between the tri-cone bit and the impregnated diamond bit with the pulse jets by low temperature electroplating
层位 钻头型号 井段(m) 泥浆密度(g/cm3) 进尺(m) 纯钻时间(h) 机械钻速(m/h) 自流井组 武汉地大(WHX061) 3 908.30~3 938.01 1.66 29.71 31.75 0.94 自流井组 HJT537GK 3 938.01~3 944.17 1.66 6.16 10.14 0.60 自流井组 SJT637GHL 3 944.17~3 953.32 1.66 9.15 15.66 0.58 自流井组 SJT637GHL 3 953.32~3 961.79 1.66 8.47 12.6 0.67 自流井组 HJT637GL 3 961.79~3 873.40 1.66 11.61 19.2 0.60 -
[1] He, L.F., Xie, C.L., Chen, K.M., 2007. Numerical simulation about effect of flow path on PDC bit fluid field. Journal of University of Shanghai for Science and Technology, 29(1): 59-64 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HDGY200701012.htm [2] Huang, H.M., Zhai, Y.H., 2005. Numerical simulation and experimental checking for downhole flow field of a real PDC bit. Journal of the University of Petroleum, China, 29(3): 49-52 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX200503011.htm [3] Kuang, Y.C., Zeng, H., Zhou, X.J., et al., 2006. Study on optimized design of hydraulic structure for PDC bits. Natural Gas Industry, 26(4): 60-61 (in Chinese with English abstract). [4] Li, T.M., Li D.F., Lei, Y., et al., 2008. Application of self-excited oscillation pulsed jet in improving the penetration rate of PDC drill bits. Exploration Engineering (Rock & Soil Drilling and Tunneling), 11: 74-77 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_exploration-engineering-rock-soil-drilling-tunneling_thesis/0201216214107.html [5] Li, D.F., Tu, H.Z., Li, T.M., 2008. Diamond, PDC bit and technology. Geological Publishing House, Beijing, 332-335 (in Chinese). [6] Tao, W.Q., 2011. Nnmerical heat transfer. Xi'an Jiaotong University Press, Xi'an, 370-376 (in Chinese). [7] Wang, F.J., 2004. Computational fluid dynamics analysis-CFD software principle and application. Tsinghua University Press, Beijing, 144-158 (in Chinese). [8] Wang, R.H., Shen, Z.H., 1998. Bottom flow field numerical simulation of conical swirling jet. Journal of Petroleum University (Natural Science Edition), 22(6): 46-49 (in Chinese with English abstract). http://www.researchgate.net/publication/297433550_Numerical_simulation_of_swirling_jet_in_flow_field_at_bottomhole [9] Xiong, J.Y., 1995. Rock shovel with pulse-jet nozzle and rock breaking mechanism. Natural Gas Industries, 15(2): 38-40 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-TRQG502.009.htm [10] Zhang, Y.X., Wang, C.M., Wang, H., et al., 2004. Self-excited oscillation of pulse jet nozzle experimental research. Mechanical Research & Application, 44-46 (in Chinese with English abstract). [11] 何林峰, 谢翠丽, 陈康民, 等, 2007. 流道形状对PDC钻头头部流场影响的数值模拟. 上海理工大学学报, 29(1): 59-64. doi: 10.3969/j.issn.1007-6735.2007.01.013 [12] 黄红梅, 翟应虎, 2005. 实体PDC钻头流场数值模拟与实验验证. 石油大学学报(自然科学版), 29(3): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200503011.htm [13] 况雨春, 曾恒, 周学军, 等, 2006. PDC钻头水力结构优化设计研究. 天然气工业, 26(4): 60-61. doi: 10.3321/j.issn:1000-0976.2006.04.020 [14] 李大佛, 屠厚泽, 李天明, 2008. 金刚石、PDC钻头与工艺学. 北京: 地质出版社, 332-335. [15] 李天明, 李大佛, 雷艳, 等, 2008. 自激振荡脉冲射流提高PDC钻头机械钻速实践. 探矿工程(岩土钻掘工程), 11: 74-77. https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC200811029.htm [16] 陶文铨, 2001. 数值传热学. 西安: 西安交通大学出版社, 370-376. [17] 王福军, 2004. 计算流体动力学分析: CFD软件原理与应用. 北京: 清华大学出版社, 144-158. [18] 王瑞和, 沈忠厚, 1998. 锥形旋转射流井底流场的数值模拟. 石油大学学报(自然科学版), 22(6): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX806.008.htm [19] 熊继有, 1995. 脉冲射流喷嘴的清岩与破岩机理. 天然气工业, 15(2): 38-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG502.009.htm [20] 张于贤, 王春明, 王红, 等, 2004. 自激振荡脉冲射流喷嘴的试验研究. 机械研究与应用, 5: 44-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYJ200405022.htm