Neo-Tethys Mineralization on the Southern Margin of the Gangdise Metallogenic Belt, Tibet, China: Evidence from Re-Os Ages of Xiongcun Orebody No. Ⅰ
-
摘要: 雄村矿集区是近年来西藏冈底斯成矿带内发现的一处超大型铜金矿集区, 该矿集区位于冈底斯造山带中段南缘, 其南侧紧邻日喀则弧前盆地.最新的勘探资料表明, 雄村矿集区由Ⅰ、Ⅱ、Ⅲ号斑岩型铜金矿体组成.本文以雄村Ⅰ号矿体为研究对象, 获得Ⅰ号矿体中4件辉钼矿样品的Re-Os模式年龄范围非常一致, 其变化范围为160.1±2.3~163.4±2.3 Ma, 等时线年龄为161±11 Ma(MSWD=4.2), 误差较大, 而平均模式年龄161.5±2.7 Ma(MSWD=2.0), 误差较小.因此, 雄村Ⅰ号矿体的形成时代为160.1±2.3~163.4±2.3 Ma, 最有可能的形成年龄应为161.5±2.7 Ma, 该年龄代表了雄村Ⅰ号矿体的成矿年龄, 这与前人获得的含矿斑岩(含眼球状石英斑晶的角闪石英闪长玢岩)的锆石U-Pb年龄(164.3±1.9 Ma)基本吻合, 表明矿床形成于中侏罗世.同时, 雄村Ⅰ号矿体的含矿斑岩体和赋矿火山岩具有与岛弧火成岩类似的地球化学特征, 如相对富集LREE、LILE, 亏损HREE、HFS, 缺少或微弱负Eu异常.综合来看, 雄村Ⅰ号矿体形成于新特提斯洋俯冲期(>65 Ma), 产出的构造背景为新特提斯洋向北俯冲形成的岛弧环境, 属岛弧型斑岩铜金矿床.Abstract: Xiongcun metallogenic district, one of the large-size metallogenic areas discovered along Gangdise metallogenic belt, is located in the middle of the southern margin of Gangdise orogenic belt. Its south margin is Shigatse forearc basin. The latest exploration data indicate that Xiongcun metallogenic district is composed of No. Ⅰ, Ⅱ and Ⅲ porphyry copper-gold orebodies. In this paper, Xiongcun orebody No.Ⅰ is taken as the research subject. The Re-Os model ages of molybdenit (4 samples) from Xiongcun orebody No.Ⅰ are similar, ranging from 160.1±2.3 Ma to 163.4±2.3 Ma; its isochron age is 161±11 Ma (MSWD=4.2) and error is big; its weight average age is 161.5±2.7 Ma (MSWD=2.0) and error is small. So ore forming age of Xiongcun orebody No. Ⅰ is (160.1±2.3)-(163.4±2.3) Ma and the most probability is 161.5±2.7 Ma. This age is similar to zircon U-Pb age (164.3±1.9 Ma) of mineralization porphyry (hornblende quartz diorite porphyry with big quartz eyes), so the ore forming age of Xiongcun orebody No.Ⅰ is Middle Jurassic. In addition, mineralized porphyry and tuff show geochemical characteristics similar to those of volcanic rocks in an arc or active continental margin, such as relative enrichment of LREE and LILE, depletion of HFEE, HFS and Eu anomalies. We conclude that northward subduction of Neo-Tethys resulted in mineralization of the Xiongcun orebody No.Ⅰ in the Middle Jurassic; the tectonic setting is the island-arc environment. The deposit type of Xiongcun orebody No.Ⅰ is island arc type porphyry copper-gold deposit.
-
Key words:
- Re-Os dating /
- molybdenite /
- porphyry /
- mineralization /
- Tibet /
- Neo-Tethys Ocean
-
图 1 雄村Ⅰ号矿区地质图(据Oliver, 2006;唐菊兴等, 2006修编)
1.全新统冲积物-崩积物;2.中-下侏罗统雄村组;3.早-中侏罗世角闪石英闪长玢岩;4.中-晚侏罗世含眼球状石英斑晶的角闪石英闪长玢岩;5.晚侏罗世石英闪长玢岩;6.斜长闪长玢岩;7.始新世黑云母花岗闪长岩;8.始新世花岗细晶岩脉;9.逆冲断层;10.平移断层;11.产状或性质不明断层;12.雄村Ⅰ号矿体范围;13.钻孔位置;14.勘探线及编号;15.采样位置及编号;16.雄村矿集区位置;17.剖面位置;JS.金沙江缝合带;BNS.班公湖-怒江缝合带;IYS.印度河-雅鲁藏布江缝合带;MBT.主边界逆冲断裂
Fig. 1. Geological map of Xiongcun orebody No.Ⅰ
图 3 雄村1号矿区I-I'地质剖面图(据郎兴海等,2011修改)
Fig. 3. I-I'geological profile in the Xiongcun orebody No.Ⅰ
表 1 雄村Ⅰ号矿体中辉钼矿Re-Os同位素数据
Table 1. Re-Os isotopic datum of molybdenite from Xiongcun orebody No. Ⅰ
原样名 样重(g) Re(ng/g) C普Os(ng/g) 187Re(ng/g) 187Os(ng/g) 模式年龄(Ma) 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 X-I 0.000 46 12 181 839 106 273 2.392 4.304 7 656 529 66 796 20 483 165 160.4 2.3 X5023-8 0.000 49 5 077 145 42 908 2.713 1.664 3 191 087 26 969 8 522 73 160.1 2.3 X5024-2 0.000 1 5 276 867 42 955 2.663 4.222 3 316 617 26 999 9 040 78 163.4 2.3 X5028-3 0.001 14 9 760 974 137 051 1.455 1.496 6 134 968 86 144 16 677 133 162.9 2.9 注:测试单位,国家地质实验测试中心Re-Os同位素实验室;测试人,屈文俊. -
[1] Candela, P.A., 1992. Controls on ore metal ratios in granite-related ore systems: an experimental and computational approach (in the second Hutton symposium on the origin of granites and related rocks; proceedings). Special Paper-Geological Society of America, 272: 317-326. [2] Chu, M.F., Chung, S.L., Song, B., et al., 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34(9): 745-748. doi: 10.1130/G22725.1 [3] Cooke, D.R., Hollings, P., Walshe, J.L., 2005. Giant porphyry deposits: characteristics, distribution and tectonic controls. Economic Geology, 100(5): 801-818. doi: 10.2113/100.5.801 [4] Ding, F., Tang, J.X., Cui, X.L., 2006. The indication of S and Pb isotopic compositions and trace elements to ore-forming material source in the Xiongcun Cu-Au deposit, Tibet. Mineral Deposits, 25(Suppl. ): 399-402 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ2006S1106.htm [5] Ding, L., Kapp, P., Wan, X.Q., et al., 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asian collision, South Central Tibet. Tectonics, 24: 1-l8. doi: 10.1029/2004TC001729 [6] Dong, Y.H., Xu, J.F., Zeng, Q.G., et al., 2006. Is there a Neo-tethys' subduction record earlier than arc volcanic rocls in the Sangri Group. Acta Petrologica Sinica, 22(3): 661-668 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252030460.html [7] Du, A.D., He, H.L., Yin, N.W., et al., 1995. A study of the rhenium-osmium geochronometry of molybdenites. Acta Geologica Sinica (English Edition), 8(2): 171-181. doi: 10.1111/j.1755-6724.1995.mp8002004.x [8] Du, A.D., He, H.L., Yin, N.W., et al., 1994. A study on the rhenium-osmium geochronometry of molybdenites. Acta Geologica Sinica, 68(4): 339-347 (in Chinese with English abstract). [9] Du, A.D., Wu, S.Q., Sun, D.Z., et al., 2004. Preparation and certification of Re-Os dating reference materials: molybdenites HLP and JDC. Geostandards and Geoanalytical Research, 28(1): 41-52. doi: 10.1111/j.1751-908X.2004.tb01042.x [10] Geng, Q.R., Pan, G.T., Jin, Z.M., et al., 2005. Geochemistry and genesis of the Yeba Volcanic rocks in the Gangdise magmatic arc, Tibet. Earth Science—Journal of China University of Geosciences, 30(6): 747-760 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical_dqkx-e200504001.aspx [11] Geng, Q.R., Pan, G.T., Wang, L.Q., et al., 2006. Isotopic geochronology of the volcanic rocks from the Yeba Formation in the Gangdise zone, Xizang. Sedimentary Geology and Tethyan Geology, 26(1): 1-7(in Chinese with English abstract). http://www.researchgate.net/publication/306205220_Isotopic_geochronology_of_the_volcanic_rocks_from_the_Yeba_Formation_in_the_Gangdise_zone_Xizang [12] He, Z.H., Yang, D.M., Zheng, C.Q., et al., 2006. Isotopic dating of the Mamba granitoid in the Gangdise tectonic belt and its constraint on the subduction time of the neotethys. Geological Review, 52(1): 100-106 (in Chinese with English abstract). http://www.researchgate.net/publication/313599363_Isotopic_dating_of_the_Mamba_granitoid_in_the_Gangdese_tectonic_belt_and_its_constraint_on_the_subduction_time_of_the_Neo-Tethys [13] Honegger, K., Dietrich, V., Frank, W., et al., 1982. Magmatism and metamorphism in the Ladakh Himalayas (the Indus-Tsangpo suture zone). Earth and Planetary Science Letters, 60(2): 253-292. doi: 10.1016/0012-821X(82)90007-3 [14] Hou, Z.Q., Yang, Z.S., Xu, W.Y., et al., 2006a. Metallogenesis in Tibetan collisional orogenic belt: Ⅰ. mineralization in main collisional orogenic setting. Mineral Deposits, 25(4): 337-358 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200606000.htm [15] Hou, Z.Q., Wang, E.Q., 2008. Metallogenesis of the Indo-Asian collisional orogen: new advances. Acta Geoscientica Sinica, 29(3): 275-292 (in Chinese with English abstract). [16] Kerrich, R., Goldfarb, R.J., Groves, D., et al., 2000. The geodynamics of world-class gold deposits: characteristics, space-time distribution, and origins. Reviews in Economic Geology, 13: 501-551. http://www.researchgate.net/publication/313668500_The_geodynamics_of_world-class_gold_deposits_Characteristics_space-time_distribution_and_origins [17] Lang, X.H., Chen, Y.C., Tang, J.X., et al., 2010a. A discussion on genesis of Xiongcun porphyry copper-gold deposit, Xietongmen, Xizang (Tibet)—evidences from elements spatial distribution characteristics. Geological Review, 56(3): 384-402 (in Chinese with English abstract). [18] Lang, X.H., Chen, Y.C., Tang, J.X., et al., 2010b. Characteristics of rock geochemistry of orebody No. Ⅰ in the Xiongcun porphyry copper-gold metallogenic district, Xietongmen county, Tibet: constraints on metallogenic tectonic settings. Geology and Exploration, 46(5): 887-898 (in Chinese with English abstract). http://www.researchgate.net/publication/288671835_Characteristics_of_rock_geochemistry_of_orebody_No_I_in_the_Xiongcun_porphyry_copper-gold_metallogenic_district [19] Lang, X.H., Tang, J.X., Chen, Y.C., et al., 2010c. Re-Os dating of molybdenite from orebody No. Ⅱ of the Xiongcun porphyry copper-gold metallogenic district, Xietongmen, Tibet and its geological significance. Journal Minerals and Petrology, 30(4): 55-61 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS201004012.htm [20] Lang, X.H., Tang, J.X., Li, Z.J., et al., 2011. Alteration and mineralization of No. Ⅰ orebody in Xiongcun porphyry copper-gold metallogenic ore district, Xietongmen county, Tibet. Mineral Deposits, 30(2): 327-338 (in Chinese with English abstract). [21] Ludwig, K.R., 1999. A geochronological toolkit for Microsoft Excel. Geochronology Center, Berkeley. [22] Mo, X.X., Dong, G.C., Zhao, Z.D., et al., 2005. Spatial and temporal distribution and characteristics of granitoids in the Gangdise, Tibet and implication for crustal growth and evolution. Geological Journal of China Universities, 11(3): 281-290 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026542272 [23] Mo, X.X., Zhao, Z.D., Deng, J.F., et al., 2003. Response of volcanism to the India-Asia collision. Earth Science Frontiers, 10(3): 135-148 (in Chinese with English abstract). http://www.researchgate.net/publication/302561161_Response_of_volcanism_to_the_India-Asia_collisionJ [24] Mo, X.X., Zhao, Z.D., Zhou, S., et al., 2002. Evidence for timing of the initiation of India-Asia collision from igneous rocks in Tibet. EOS. AGU 2002 Fall Meeting Abstracts, San Francisco. [25] Mungall, J.E., 2002. Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits. Geology, 30(10): 915-918. doi: 10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO [26] Oliver, J., 2006. Geological mapping of the Xietongmen property and continuous areas, Tibet. People's Republic of China. Private Report to Continental Minerals Corp. [27] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006. Spatial-teporal framework of the Gangdisi orogenic belt and its evolution. Acta Petrologica Sinica, 22(3): 521-533 in Chinese with English abstract). http://www.oalib.com/paper/1472080 [28] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983. doi: 10.1093/petrology/25.4.956 [29] Qin, K.Z., Li, G.M., Li, J.X., et al., 2005. The Xiongcun Cu-Zn-Au deposit in the western segment of the Gangdise, Tibet: a Mesozoic VHMS-type deposit cut by late Veins. In: Mao, J.W., Bierlein, F.P., ed., Mineral deposit research: meeting the global challenge. Springer, 2: 1255-1258. doi: 10.1007/3-540-27946-6_320 [30] Qu, W.J., Du, A.D., 2003. Highly precise Re-Os dating of molybdenite by ICP-MS with carius tube sample digestion. Rock and Mineral Analysis, 22(4): 254-257 (in Chinese with English abstract). http://www.researchgate.net/publication/302500144_Highly_Precise_Re-Os_Dating_of_Molybdenite_by_ICP-MS_with_Carius_Tube_Sample_Digestion [31] Qu, X.M., Xin, H.B., Xu, W.Y., 2007a. Collation of age of ore-hosting volcanics in Xiongcun superlarge Cu-Au deposit on basis of three zircon U-Pb SHRIMP ages. Mineral Deposits, 26(5): 513-518(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200705004.htm [32] Qu, X.M., Xin, H.B., Xu, W.Y., 2007b. Petrogenesis of the ore-hosting volcanic rocks and their contribution to mineralization in Xiongcun superlarge Cu-Au deposit, Tibet. Acta Geologica Sinica, 81(7): 964-971(in Chinese with English abstract). http://www.researchgate.net/publication/279691706_Petrogenesis_of_the_ore-hosting_volcanic_rocks_and_their_contribution_to_mineralization_in_Xiongcun_superlarge_Cu-Au_deposit_Tibet [33] Richards, J.P., 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98(8): 1515-1533. doi: 10.2113/gsecongeo.98.8.1515 [34] Richards, J.P., 2005. Cumulative factors in the generation of gaint calc-alkaline porphyry Cu deposits. In: Porter, T.M., ed., Super-porphyry copper & gold deposits: a global perspective. PGC Publishing, Adelaide, 1: 7-25. [35] Richards, J.P., 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere. Geology, 37(3): 247-250. doi: 10.1130/G25451A.1 [36] Shirey, S.B., Walker, R.J., 1995. Carius tube digestion for low-blank rhenium-osmium analysis. Analytical Chemistry, 67(13): 2136-2141. doi: 10.1021/ac00109a036 [37] Sillitoe, R.H., 1972. A plate tectonic model for the origin of porphyry copper deposits. Economic Geology, 67: 184-197. doi: 10.2113/gsecongeo.67.2.184 [38] Sillitoe, R.H., 1997. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Australian Journal of Earth Sciences, 44(3) : 373-388. doi: 10.1080/08120099708728318 [39] Singer, D.A., Berger, V.I., Menzie, W.D., et al., 2005. Porphyry copper deposit density. Economic Geology, 100(3): 491-514. doi: 10.2113/gsecongeo.100.3.491 [40] Simoliar, M, I., Walker, R.J., Morgan, J.W., 1996. Re-Os ages of group IIA, IIIA, IVA and IVB iron meteorites. Science, 271(5252): 1099-l102. doi: 10.1126/science.271.5252.1099 [41] Tafti, R., 2006. Preliminary geochronology report for the Xietongmen deposit area, Tibet, China. Private Report to Continental Minerals Corp. [42] Tang, J.X., Huang, Y., Li, Z.J., et al., 2009a. Element geochemical characteristics of Xiongcun Cu-Au deposit in Xietongmen county, Tibet. Mineral Deposits, 28(1): 15-28 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200901003.htm [43] Tang, J.X., Zhang, L., Huang, Y., et al., 2009b. 40Ar/39Ar isotope ages of main geological bodies in Xiongcun copper-gold deposit, Xietongmen county, Tibet, and their geological significance. Mineral Deposits, 28(6): 759-769 (in Chinese with English abstract). http://www.researchgate.net/publication/284603207_40Ar39Ar_isotope_ages_of_main_geological_bodies_in_Xiongcun_copper-gold_deposit_Xietongmen_County_Tibet_and_their_geological_significance [44] Tang, J.X., Li, F.J., Li, Z.J., et al., 2010. Time limit for formation of main geological bodies in Xiongcun copper-gold deposit, Xietongmen county, Tibet: evidence from zircon U-Pb ages and Re-Os age of molybdenite. Mineral Deposits, 29(3): 161-475 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201003007.htm [45] Tang, J.X., Li, Z.J., Zhong, K.H., et al., 2006. Exploration report of Xiongcun copper deposit, Xietongmen county, Xizang. Chengdu University of Technology, Chengdu(in Chinese). [46] Tang, J.X., Li, Z.J., Zhang, L., et al., 2007. Geological characteristic of the Xiongcun type porphyry-epithermal copper-gold deposit. Acta Mineralogica Sinica, (Suppl. )1: 127-128 (in Chinese). [47] Wang, L.Q., Pan, G.T., Zhu, D.C., et al., 2008. Carboniferous-Permian island arc orogenesis in the Gangdise belt, Tibet, China: evidence from volcanic rocks and geochemistry. Geological Bulletin of China, 27(9): 1509-1534 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200809014.htm [48] Xu, W.Y., Qu, X.M., Hou, Z.Q., et al., 2005. Fluid inclusion studies of the Xiongcun copper-gold deposit in central Gangdise, Tibet. Acta Petrologica et Mineralogica, 24(4): 301-310 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200504006.htm [49] Xu, W.Y., Qu, X.M., Hou, Z.Q., et al., 2006a. Ore-forming fluid characteristics and genesis of Xiongcun copper-gold deposit in Central Gangdise, Tibet. Mineral Deposits, 25(3): 243-251 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200603002.htm [50] Xu, W.Y., Qu, X.M., Hou, Z.Q., et al., 2006b. The Xiongcun copper-gold deposit in Tibet: characteristics, genesis, and geodynamic application. Acta Geologica Sinica, 80(9): 1392-1406 (in Chinese with English abstract). http://www.researchgate.net/publication/282542273_The_Xiongcun_copper-gold_deposit_in_Tibet_Characteristics_genesis_and_geodynamic_application [51] Zhang, H.F., Xu, W.C., Guo, J.Q., et al., 2007. Zircon U-Pb and Hf isotopic composition of deformed granite in the southern margin of the Gangdise belt, Tibet: evidence for Early Jurassic subduction of Neo-Tethyan oceanic slab. Acta Petrologica Sinica, 23(6): 1347-1353 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200706010.htm [52] Zhang, L., Tang, J.X., Deng, Q., et al., 2007. Study on mineral compositions of the ore from the Xiongcun Cu (Au) deposit in Xietongmen county, Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edition), 34(3): 318-326 (in Chinese with English abstract). http://www.researchgate.net/publication/279764755_Study_on_mineral_compositions_of_the_ore_from_the_Xiongcun_CuAu_deposit_in_Xietongmen_County_Tibet_China [53] Zhong, D.L., Ji, J.Q., Hu, S.L., 1999. Neo-Tethys subduction time: 40Ar/39Ar micro-area age of metamorphic oceanic crust fragments. Chinese Science Bulletin, 44(16): 1782-1785 (in Chinese). doi: 10.1360/csb1999-44-16-1782 [54] Zhou, S., Mo, X.X., Mahoney, J.J., et al., 2002. Geochronology and Nd and Pb isotope characteristics of gabbro dikes in the Luobusha ophiolite, Tibet. Chinese Science Bulletin (English edition), 47(2): 143-146. doi: 10.1360/02tb9033 [55] Zhou, S., 2002. Study on the Geochronology of pivotal regions of Gangdise magmatic and Yarlung Zangpo ophilite belts, Tibet (Dessitation). China University of Geosciences, Beijing, 70-72 (in Chinese). [56] Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2009. Permian and Early Cretaceous tectonomagmatism in southern Tibet and Tethyan evolution: new perspective. Earth Science Frontiers, 16(2): 1-20 (in Chinese with English abstract). [57] Zhu, D.C., Pan, G.T., Wang, L.Q., et al., 2008. Spatial-temporal distribution and tectonic setting of Jurassic magmatism in the Gangdise belt, Tibet, China. Geological Bulletin of China, 27(4): 458-468 (in Chinese with English abstract). [58] Zhu, Z.X., Liao, Y.A., Teng, Y., et al., 1996. The ophiolitic stratigraphy in the open-close belt in Yarlung Zangbo River, Tibet, China. Journal of Stratigraphy, 20(4): 299-304 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ604.010.htm [59] 丁枫, 唐菊兴, 崔晓亮, 2006. 硫、铅同位素及微量元素对西藏雄村铜金矿成矿物质来源的指示. 矿床地质, 25(增刊): 399-402. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2006S1106.htm [60] 董彦辉, 许继峰, 曾庆高, 等, 2006. 存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么?岩石学报, 22(3): 661-668. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603015.htm [61] 杜安道, 何红蓼, 殷宁万, 等, 1994. 辉钼矿的铼-饿同位素地质年龄测定方法研究. 地质学报, 68(4): 339-347. doi: 10.3321/j.issn:0001-5717.1994.04.005 [62] 耿全如, 潘桂棠, 金振民, 等, 2005. 西藏冈底斯带叶巴组火山岩地球化学及成因. 地球科学——中国地质大学学报, 30(6): 747-760. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200506010.htm [63] 耿全如, 潘桂棠, 王立全, 等, 2006. 西藏冈底斯带叶巴组火山岩同位素地质年代. 沉积与特提斯地质, 26(1): 1-7. doi: 10.3969/j.issn.1009-3850.2006.01.001 [64] 和钟铧, 杨德明, 郑常青, 等, 2006. 冈底斯带门巴花岗岩同位素测年及其对新特提斯洋俯冲时代的约束. 地质论评, 52(1): 100-106. doi: 10.3321/j.issn:0371-5736.2006.01.013 [65] 侯增谦, 杨竹森, 徐文艺, 等, 2006a. 青藏高原碰撞造山带: Ⅰ. 主碰撞造山成矿作用. 矿床地质, 25(4): 337-358. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200604000.htm [66] 侯增谦, 王二七, 2008. 印度-亚洲大陆碰撞成矿作用主要研究进展. 地球学报, 29(3): 275-292. doi: 10.3321/j.issn:1006-3021.2008.03.003 [67] 郎兴海, 陈毓川, 唐菊兴, 等, 2010a. 西藏谢通门县雄村斑岩型铜金矿床成因讨论——来自元素的空间分布特征的证据. 地质论评, 56(3): 384-402. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201003011.htm [68] 郎兴海, 陈毓川, 唐菊兴, 等, 2010b. 西藏谢通门县雄村斑岩型铜金矿集区Ⅰ号矿体的岩石地球化学特征: 对成矿构造背景的约束. 地质与勘探, 46(5): 887-898. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201005014.htm [69] 郎兴海, 唐菊兴, 陈毓川, 等, 2010c. 西藏谢通门县雄村斑岩型铜金矿区Ⅱ号矿体中辉钼矿Re-Os年代学及地质意义. 矿物岩石, 30(4): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201004012.htm [70] 郎兴海, 唐菊兴, 李志军, 等, 2011. 西藏谢通门县雄村斑岩型铜金矿集区Ⅰ号矿体的蚀变与矿化特征. 矿床地质, 30(2): 327-338. doi: 10.3969/j.issn.0258-7106.2011.02.013 [71] 莫宣学, 董国臣, 赵志丹, 等, 2005. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息. 高校地质学报, 11(3): 281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001 [72] 莫宣学, 赵志丹, 邓晋福, 等, 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013 [73] 潘桂棠, 莫宣学, 侯增谦, 等, 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm [74] 曲晓明, 辛洪波, 徐文艺, 2007a. 三个锆石U-Pb SHRIMP年龄对雄村特大型铜金矿床容矿火成岩时代的重新厘定. 矿床地质, 26(5): 512-518. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200705004.htm [75] 曲晓明, 辛洪波, 徐文艺, 2007b. 西藏雄村特大型铜金矿床容矿火山岩的成因及其对成矿的贡献. 地质学报, 81(7): 965-971. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200707011.htm [76] 屈文俊, 杜安道, 2003. 高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄. 岩矿测试, 22(4): 254-257. doi: 10.3969/j.issn.0254-5357.2003.04.003 [77] 唐菊兴, 黎凤佶, 李志军, 等, 2010. 西藏谢通门县雄村铜金矿主要地质体形成的时限: 锆石U-Pb、辉钼矿Re-Os年龄的证据. 矿床地质, 29(3): 161-175. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201003007.htm [78] 唐菊兴, 李志军, 张丽, 等, 2007. 雄村式斑岩型-浅成低温热液型铜金矿地质特征. 矿物学报, Z1: 127-128. [79] 唐菊兴, 李志军, 钟康惠, 等. 2006. 西藏自治区谢通门县雄村铜矿勘探地质报告. 成都: 成都理工大学. [80] 唐菊兴, 黄勇, 李志军, 等, 2009a. 西藏谢通门县雄村铜金矿元素地球化学特征. 矿床地质, 28(1): 15-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200901003.htm [81] 唐菊兴, 张丽, 黄勇, 等, 2009b. 西藏谢通门县雄村铜金矿主要地质体的40Ar/39Ar年龄及其地质意义. 矿床地质, 28(6): 759-769. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200906004.htm [82] 王立全, 潘桂棠, 朱弟成, 等, 2008. 西藏冈底斯带石炭纪-二叠纪岛弧造山作用: 火山岩和地球化学证据. 地质通报, 27(9): 1509-1534. doi: 10.3969/j.issn.1671-2552.2008.09.012 [83] 徐文艺, 曲晓明, 侯增谦, 等, 2005. 西藏冈底斯中段雄村铜金矿床流体包裹体研究. 岩石矿物学杂志, 24(4): 301-310. doi: 10.3969/j.issn.1000-6524.2005.04.007 [84] 徐文艺, 曲晓明, 侯增谦, 等, 2006a. 西藏冈底斯中段雄村铜金矿床成矿流体特征与成因探讨. 矿床地质, 25(3): 243-251. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200603002.htm [85] 徐文艺, 曲晓明, 侯增谦, 等, 2006b. 西藏雄村大型铜金矿床的特征、成因和动力学背景. 地质学报, 80(9): 1393-1406. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200609014.htm [86] 张宏飞, 徐旺春, 郭建秋, 等, 2007. 冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成: 新特提斯洋早侏罗世俯冲作用的证据. 岩石学报, 23(6): 1347-1353. doi: 10.3969/j.issn.1000-0569.2007.06.011 [87] 张丽, 唐菊兴, 邓起, 等, 2007. 西藏谢通门县雄村铜(金)矿矿石物质成分研究及其意义. 成都理工大学学报(自然科学学报), 34(3): 318-326. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200703015.htm [88] 钟大赉, 季建清, 胡世玲, 1999. 新特提斯洋俯冲时间: 变质洋壳残片40Ar/39Ar微区年龄. 科学通报, 44(16): 1782-1785. doi: 10.3321/j.issn:0023-074X.1999.16.022 [89] 周肃, 2002. 西藏冈底斯岩浆岩带及雅鲁藏布蛇绿岩带关键地段同位素年代学研究(博士学位论文). 北京: 中国地质大学, 70-72. [90] 朱弟成, 莫宣学, 赵志丹, 等, 2009. 西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化: 新观点. 地学前缘, 16(2): 1-20. doi: 10.3321/j.issn:1005-2321.2009.02.001 [91] 朱弟成, 潘桂棠, 王立全, 等, 2008. 西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境. 地质通报, 27(4): 458-468. doi: 10.3969/j.issn.1671-2552.2008.04.003 [92] 朱占祥, 廖远安, 腾云, 等, 1996. 雅鲁藏布江开合带蛇绿岩地层. 地层学杂志, 20(4): 299-304. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ604.010.htm