• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏查个勒铜铅锌矿成岩成矿时代及意义

    高顺宝 郑有业 田立明 张众 屈文俊 刘敏院 郑海涛 郑磊 朱继华

    高顺宝, 郑有业, 田立明, 张众, 屈文俊, 刘敏院, 郑海涛, 郑磊, 朱继华, 2012. 西藏查个勒铜铅锌矿成岩成矿时代及意义. 地球科学, 37(3): 507-514. doi: 10.3799/dqkx.2012.057
    引用本文: 高顺宝, 郑有业, 田立明, 张众, 屈文俊, 刘敏院, 郑海涛, 郑磊, 朱继华, 2012. 西藏查个勒铜铅锌矿成岩成矿时代及意义. 地球科学, 37(3): 507-514. doi: 10.3799/dqkx.2012.057
    GAO Shun-bao, ZHENG You-ye, TIAN Li-ming, ZHANG Zhong, QU Wen-jun, LIU Min-yuan, ZHENG Hai-tao, ZHENG Lei, ZHU Ji-hua, 2012. Geochronology of Magmatic Intrusions and Mineralization of Chagele Copper-Lead-Zinc Deposit in Tibet and Its Implications. Earth Science, 37(3): 507-514. doi: 10.3799/dqkx.2012.057
    Citation: GAO Shun-bao, ZHENG You-ye, TIAN Li-ming, ZHANG Zhong, QU Wen-jun, LIU Min-yuan, ZHENG Hai-tao, ZHENG Lei, ZHU Ji-hua, 2012. Geochronology of Magmatic Intrusions and Mineralization of Chagele Copper-Lead-Zinc Deposit in Tibet and Its Implications. Earth Science, 37(3): 507-514. doi: 10.3799/dqkx.2012.057

    西藏查个勒铜铅锌矿成岩成矿时代及意义

    doi: 10.3799/dqkx.2012.057
    基金项目: 

    青藏专项项目 1212010918033

    长江学者和创新团队发展计划 IRT1083

    详细信息
      作者简介:

      高顺宝(1980-), 男, 博士研究生, 矿产普查与勘探专业

      通讯作者:

      郑有业, E-mail: zhyouye@163.com

    • 中图分类号: P613

    Geochronology of Magmatic Intrusions and Mineralization of Chagele Copper-Lead-Zinc Deposit in Tibet and Its Implications

    • 摘要: 西藏查个勒铜铅锌矿在念青唐古拉铜铅锌银成矿带已发现的铜多金属矿床中处于最西端, 矿区同时存在接触交代-充填型铜铅锌矿化和斑岩型铜钼矿化.锆石LA-ICP-MS U-Pb和辉钼矿Re-Os测试表明, 矿区两种类型矿化近乎同时形成, 北部与铜铅锌矿化相关的花岗斑岩成岩时代为62.1±1.1 Ma(MSWD=2.7), 南部与铜钼矿化相关的花岗斑岩成岩时代为63.28±0.86 Ma(MSWD=3.2), 南部辉钼矿Re-Os等时线年龄为61.49±0.60 Ma(MSWD=1.5), 是在雅鲁藏布江洋盆北向俯冲后的同碰撞期形成的.该成果完善和充实了念青唐古拉铜铅锌银成矿带碰撞期成矿的时间演化序列, 且使该带规模在原有基础之上向西延伸了200 km(谢通门县青都-昂仁县查个勒), 显示该带为一条贯穿东西、以碰撞期成矿为主、长大于800 km的巨型铜铅锌银成矿带, 并为继续在此带向西寻找该类型矿床提供了重要依据.

       

    • 图  1  查个勒矿区地质简图

      1.冰碛、冲洪积、残破积;2.始新统帕那组流纹质含火山角砾凝灰质熔岩;3.中二叠统下拉组三段灰岩、钙质板岩;4.中二叠统下拉组二段石英(杂)砂岩、板岩;5.中二叠统下拉组一段千枚岩;6.花岗斑岩;7.铜铅锌矿体;8.断层破碎带及铜钼矿体;9.断层;10.脆-韧性剪切带;11.采样位置

      Fig.  1.  Geological map of Chagele deposit

      图  2  查个勒矿区花岗斑岩锆石阴极发光照片

      Fig.  2.  CL images of zircons for porphyry granite in Chagele deposit

      图  3  查个勒矿区花岗斑岩锆石U-Pb谐和图

      Fig.  3.  U-Pb Concordia diagrams of zircons for porphyry granite in Chagele deposit

      图  4  查个勒矿区辉钼矿Re-Os等值线年龄(a)和加权平均年龄(b)

      Fig.  4.  Re-Os isotopic isochron diagram (a) and weighted meanmodelage diagram (b) of molybdenite in Chagele deposit

      表  1  查个勒矿区锆石LA-ICPMS同位素分析结果

      Table  1.   U-Pb LA-ICPMS analyses of zircon from Chagele deposit

      点号 组成(10-6) Th/U 同位素比值 年龄(Ma)
      Pb Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
      CGLD1-B4-1 5.74 259 433 0.60 0.059 0 0.003 0 0.083 9 0.004 2 0.010 4 0.000 1 565 109 81.8 3.9 66.8 0.8
      CGLD1-B4-2 2.31 108 190 0.57 0.068 4 0.008 1 0.091 3 0.011 0 0.010 1 0.000 2 883 246 88.7 10.3 64.7 1.3
      CGLD1-B4-3 3.09 176 223 0.79 0.078 3 0.006 2 0.107 1 0.008 3 0.010 1 0.000 2 1 154 158 103 7.6 64.8 1.2
      CGLD1-B4-5 4.17 176 360 0.49 0.051 6 0.003 0 0.067 7 0.003 8 0.009 7 0.000 1 333 135 66.5 3.6 62.2 0.9
      CGLD1-B4-6 5.85 277 497 0.56 0.048 0 0.002 9 0.064 1 0.003 7 0.009 8 0.000 1 102 137 63.1 3.5 63.0 0.9
      CGLD1-B4-8 4.17 197 365 0.54 0.048 1 0.003 2 0.060 3 0.003 6 0.009 4 0.000 1 101.9 151.8 59.4 3.5 60.6 0.9
      CGLD1-B4-9 7.61 303 575 0.53 0.052 3 0.005 3 0.077 2 0.007 4 0.010 8 0.000 1 298 233 75.5 7.0 69.4 0.9
      CGLD1-B4-10 3.47 187 289 0.65 0.055 5 0.003 9 0.069 7 0.004 7 0.009 3 0.000 2 435 125 68.4 4.5 59.9 1.0
      CGLD1-B4-11 4.66 198 320 0.62 0.081 0 0.004 2 0.120 4 0.006 4 0.010 8 0.000 2 1 233 101 115 5.8 69.1 1.0
      CGLD1-B4-12 4.21 267 333 0.80 0.054 6 0.002 9 0.070 5 0.003 6 0.009 5 0.000 1 394 117 69.2 3.4 60.7 0.9
      CGLD1-B4-14 3.92 176 310 0.57 0.053 8 0.003 1 0.074 8 0.004 3 0.010 1 0.000 2 361 127 73.2 4.0 64.8 1.1
      CGLD1-B4-15 11.45 385 887 0.43 0.052 5 0.002 0 0.078 9 0.003 1 0.010 8 0.000 1 309 89 77.1 2.9 69.6 0.9
      CGLD1-B4-16 8.89 341 691 0.49 0.048 8 0.002 1 0.072 0 0.003 0 0.010 7 0.000 1 139 102 70.6 2.8 68.8 0.9
      CGLD1-B4-17 4.30 218 355 0.61 0.051 8 0.003 2 0.067 7 0.004 1 0.009 6 0.000 1 276 143 66.5 3.9 61.5 0.9
      CGLD1-B4-18 5.72 273 467 0.58 0.048 9 0.002 5 0.065 3 0.003 5 0.009 7 0.000 1 143 120 64.2 3.3 62.5 0.8
      CGLD1-B4-19 87.8 3 893 6 372 0.61 0.052 5 0.001 1 0.078 9 0.001 7 0.010 8 0.000 1 309 46 77.1 1.6 69.4 0.6
      CGLD1-B4-20 3.28 204 261 0.78 0.059 4 0.003 9 0.077 9 0.005 0 0.009 7 0.000 1 583 141 76.2 4.7 62.0 0.9
      CGLD3-B4-1 24.1 434 463 0.94 0.051 9 0.003 4 0.075 4 0.004 5 0.010 9 0.000 2 280 148 73.8 4.3 69.8 1.0
      CGLD3-B4-2 13.7 246 348 0.71 0.055 8 0.003 3 0.074 2 0.004 2 0.009 8 0.000 1 443 130 72.7 3.9 62.7 0.9
      CGLD3-B4-3 4.59 74.4 101 0.73 0.087 5 0.007 4 0.111 7 0.008 0 0.009 8 0.000 3 1 372 164 108 7 63.2 1.6
      CGLD3-B4-4 17.5 279 351 0.79 0.068 0 0.008 7 0.094 0 0.011 7 0.010 2 0.000 2 878 262 91.2 10.9 65.3 1.0
      CGLD3-B4-5 15.1 266 389 0.68 0.048 8 0.002 9 0.062 6 0.003 5 0.009 4 0.000 1 200 133 61.6 3.3 60.6 0.9
      CGLD3-B4-6 17.9 293 392 0.75 0.050 0 0.002 8 0.069 7 0.003 8 0.010 2 0.000 2 195 130 68.4 3.6 65.7 1.0
      CGLD3-B4-7 32.3 629 666 0.94 0.050 1 0.002 4 0.068 4 0.003 1 0.010 0 0.000 1 211 109 67.1 2.9 63.9 0.9
      CGLD3-B4-8 8.9 163 191 0.85 0.067 7 0.008 4 0.085 5 0.010 6 0.009 6 0.000 2 861 255 83.3 9.9 61.7 1.1
      CGLD3-B4-9 19.8 369 433 0.85 0.050 9 0.002 9 0.067 2 0.003 8 0.009 6 0.000 1 235 131 66.0 3.6 61.6 0.8
      CGLD3-B4-10 25.1 450 582 0.77 0.047 4 0.002 7 0.064 0 0.003 5 0.009 9 0.000 1 77.9 120.4 63.0 3.3 63.2 0.8
      CGLD3-B4-11 23.1 409 436 0.94 0.053 3 0.002 5 0.071 4 0.003 3 0.009 8 0.000 1 339 107 70.0 3.2 62.6 0.9
      CGLD3-B4-12 11.2 182 205 0.89 0.054 8 0.004 9 0.069 1 0.005 7 0.009 5 0.000 2 467 200 67.8 5.4 60.6 1.2
      CGLD3-B4-13 50.4 855 938 0.91 0.046 8 0.002 0 0.071 0 0.002 9 0.011 1 0.000 1 39.0 161.1 69.7 2.7 71.1 0.8
      CGLD3-B4-14 13.9 229 261 0.88 0.050 8 0.003 2 0.074 5 0.004 6 0.010 7 0.000 2 232 146 73.0 4.4 68.4 1.0
      CGLD3-B4-15 14.8 233 443 0.53 0.053 6 0.002 9 0.074 1 0.003 9 0.010 2 0.000 1 354 119 72.6 3.7 65.4 0.9
      CGLD3-B4-16 29.6 515 668 0.77 0.051 7 0.002 3 0.071 2 0.003 0 0.010 1 0.000 1 333 106 69.8 2.9 64.9 0.7
      CGLD3-B4-17 24.9 439 632 0.70 0.054 6 0.003 7 0.072 5 0.004 1 0.009 8 0.000 1 394 152 71.1 3.9 62.9 0.8
      CGLD3-B4-18 15.6 287 280 1.02 0.055 3 0.003 9 0.075 9 0.005 0 0.010 2 0.000 2 433 157 74.3 4.8 65.6 1.1
      CGLD3-B4-19 73 1 139 1 752 0.65 0.048 2 0.001 5 0.072 8 0.002 2 0.010 9 0.000 1 109 77 71.4 2.1 70.1 0.7
      CGLD3-B4-20 23.6 424 527 0.80 0.051 0 0.002 6 0.067 6 0.003 4 0.009 7 0.000 1 239 119 66.4 3.2 62.5 0.7
      下载: 导出CSV

      表  2  查个勒矿床辉钼矿Re-Os同位素分析数据

      Table  2.   Results of Re-Os sisotopic dating of molybdenite from Chagele deposit

      样名 样重(g) Re(10-6) 普Os(10-9) 187Re(10-6) 187Os(10-9) 模式年龄(Ma)
      测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度
      CGLMo1 0.102 16 3.366 0.027 0.010 3 0.005 2 2.116 0.017 2.164 0.020 61.37 0.90
      CGLMo2 0.101 18 5.213 0.038 0.001 3 0.004 5 3.277 0.024 3.395 0.031 62.15 0.88
      CGLMo3 0.100 11 1.391 0.012 0.001 3 0.003 0 0.874 3 0.007 6 0.901 2 0.007 6 61.84 0.90
      CGLMo4 0.100 56 0.791 9 0.006 9 0.007 3 0.001 5 0.497 7 0.004 3 0.519 6 0.004 4 62.63 0.91
      CGLMo5 0.101 88 1.636 0.016 0.008 7 0.004 4 1.028 0.010 1.054 0.009 61.54 0.95
      下载: 导出CSV
    • [1] Andersen, T., 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X
      [2] Crofu, F., Hanchar, J.M., Hoskin, P.W., et al., 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. doi: 10.2113/0530469
      [3] Du, A.D., He, H.L., Yin, N.W., et al., 1994. A study on the rhenium-osmium geochronometry of molybdenites. Acta Geologica Sinica, 68(4): 339-347 (in Chinese with English abstract).
      [4] Du, A.D., Zhao, D.M., Wang, S.X., et al., 2001. Precise Re-Os dating for molybdenite by ID-NTIMS with carius tube sample preparation. Rock and Mineral Analysis, 20(4): 247-252 (in Chinese with English abstract). http://www.researchgate.net/publication/284651912_Precise_Re-Os_dating_for_molybdenite_by_ID-NTIMS_with_Carius_tube_sample_preparation
      [5] Gao, Y.M., Chen, Y.C., Tang, J.X., 2010. SHRIMP zircon U-Pb and amphibole 40Ar-39Ar dating of amphibole diorite from Sharang porphyry molybdenum deposit in Gongbo'gyamda county, Tibet, and its geological implication. Mineral Deposits, 29(2): 323-331 (in Chinese with English abstract). http://www.researchgate.net/publication/312920328_SHRIMP_zircon_U-Pb_and_amphibole_40Ar-39Ar_dating_of_amphibole_diorite_from_Sharang_porphyry_molybdenum_deposit_in_Gongbo'gyamda_county_Tibet_and_its_geological_implication
      [6] Gao, Y.M., Chen, Y.C., Tang, J.X., et al., 2011. Re-Os dating of molybdenite from the Yaguila porphyry molybdenum deposit in Gongbo'gyamda area, Tibet, and its geological significance. Geological Bulletin of China, 30(7): 1027-1036 (in Chinese with English abstract).
      [7] Li, Y.X., Xie, Y.L., Chen, W., et al., 2011. U-Pb age and geochemical characteristics of zircon in monzogranite porphyry from Qiagong deposit, Tibet, and geological implication. Acta Petrologica Sinica, 27(7): 2023-2033 (in Chinese with English abstract). http://www.oalib.com/paper/1476881
      [8] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology, 51(1-2)537-571. doi: 10.1093/petrology/egp082
      [9] Mo, X.X., Pan, G.T., 2006. From the Tethys to the formation of the Qinghai-Tibet Plateau: constrained by tectonic-magmatic events. Earth Science Frontiers, 13(6): 43-51(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200606007.htm
      [10] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006. Spatial-temporal framework of the Gangdise orogenic belt and its evolution. Acta Petrologica Sinica, 22 (3): 521-533 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200603001.htm
      [11] Tang, J.X., Chen, Y.C., Wang, D.H., et al., 2009. Re-Os dating of molybdenite from the Sharang Porphyry Molybdenum deposit in Gongbo'gyamda county, Tibet and its geological significance. Atca Geologica Sinica, 83(5): 698-704 (in Chinese with English abstract). http://www.researchgate.net/publication/285347553_Re-Os_dating_of_molybdenite_from_the_Sharang_Porphyry_Molybdenum_deposit_in_Gongbo'gyamda_county_Tibet_and_its_geological_significance
      [12] Wu, Y.B., Zheng, Y.F., 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554-1569 (in Chinese with English abstract). doi: 10.1360/04wd0130
      [13] Yang, Y., Luo, T.Y., Huang, Z.L., et al., 2010. Sulfur and lead isotope compositions of the Narusongduo silver zinc-lead deposit in Tibet: implications for the sources of plutons and metals in the deposit. Acta Mineralogica Sinica, 30(3): 311-318 (in Chinese with English abstract). http://www.researchgate.net/publication/282821095_Sulfur_and_lead_compositions_of_the_Narusonggou_silver_zinc-lead_deposit_in_Tibet_Implications_for_the_sources_of_plutons_and_metals_in_the_deposit
      [14] Zang, W.S., Meng, X.J., Yang, Z.S., et al., 2007. Sulfur and lead isotopic compositions of lead-zinc-silver deposits in the Gangdise metallogenic belt, Tibet, China, and its geological significance. Geological Bulletin of China, 26(10): 1393-1397 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252288944.html
      [15] Zheng, Y.Y., Xue, Y.X., Cheng, L.J., et al., 2004a. Finding, characteristics and significance of Qulong superlarge porphyry copper (molybdenum) deposit, Tibet. Earth Science—Journal of China University Geosciences, 29(1): 103-108 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200401018.htm
      [16] Zheng, Y.Y., Gao, S.B., Cheng, L.J., et al., 2004b. Finding and significances of Chongjiang porphyry copper (molybdenum, gold) deposit, Tibet. Earth Science——Journal of China University Geosciences, 29(3): 333-339 (in Chinese with English abstract). http://www.researchgate.net/publication/279712382_Finding_and_significances_of_Chongjiang_porphyry_copper_molybdenum_aurum_deposit_Tibet
      [17] Zheng, Y.Y., Gao, S.B., Zhang, D.Q., et al., 2006. Ore-forming fluid controlling mineralization in Qulong super-large porphyry copper deposit, Tibet. Earth Science—Journal of China University Geosciences, 31(3): 349-354 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200603009.htm
      [18] Zheng, Y.Y., Zhang, Y.G., Gao, S.B., et al., 2008. The discovery and significance of the Sharang porphyry molybdenum deposit and its rock-forming and ore-forming age restriction. In: Chen, Y.C., ed., The proceeding of the 9th national conference of mineral deposits, China. Geol. Pub. House, Beijing, 674-676 (in Chinese).
      [19] 杜安道, 何红蓼, 殷宁万, 等, 1994. 辉钼矿的铼-锇同位素地质年龄测定方法研究. 地质学报, 68(4): 339-347. doi: 10.3321/j.issn:0001-5717.1994.04.005
      [20] 杜安道, 赵敦敏, 王淑贤, 等, 2001. Carius管溶样-负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄. 岩矿测试, 20(4): 247-252. doi: 10.3969/j.issn.0254-5357.2001.04.002
      [21] 高一鸣, 陈毓川, 唐菊兴, 2010. 西藏沙让斑岩钼矿床锆石SHRIMP定年和角闪石Ar-Ar定年及其地质意义. 矿床地质, 29(2): 323-331. doi: 10.3969/j.issn.0258-7106.2010.02.014
      [22] 高一鸣, 陈毓川, 唐菊兴, 等, 2011. 西藏工布江达地区亚贵拉铅锌钼矿床辉钼矿Re-Os测年及其地质意义. 地质通报, 30(7): 1027-1036. doi: 10.3969/j.issn.1671-2552.2011.07.004
      [23] 李应栩, 谢玉玲, 陈伟, 等, 2011. 西藏恰功铁矿二长花岗斑岩锆石的U-Pb年代学与地球化学特征及意义. 岩石学报, 27(7): 2023-2033. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107012.htm
      [24] 莫宣学, 潘桂棠, 2006. 从特提斯到青藏高原形成: 构造-岩浆事件的约束. 地学前缘, 13(6): 43-51. doi: 10.3321/j.issn:1005-2321.2006.06.007
      [25] 潘桂棠, 莫宣学, 侯增谦, 等, 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm
      [26] 唐菊兴, 陈毓川, 王登红, 等, 2009. 西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义. 地质学报, 83(5): 698-704. doi: 10.3321/j.issn:0001-5717.2009.05.010
      [27] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报. 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      [28] 杨勇, 罗泰义, 黄智龙, 等, 2010. 西藏纳如松多银铅矿S、Pb同位素组成: 对成矿物质来源的指示. 矿物学报, 30(3): 311-318. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201003007.htm
      [29] 臧文栓, 孟祥金, 杨竹森, 等, 2007. 西藏冈底斯成矿带铅锌银矿床的S、Pb同位素组成及其地质意义. 地质通报, 26(10) : 1393-1397. doi: 10.3969/j.issn.1671-2552.2007.10.017
      [30] 郑有业, 薛迎喜, 程力军, 等, 2004a. 西藏驱龙超大型斑岩铜(钼) 矿床: 发现、特征及意义. 地球科学——中国地质大学学报, 29(1): 103-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401018.htm
      [31] 郑有业, 高顺宝, 程力军, 等, 2004b. 西藏冲江大型斑岩铜(钼金)矿床的发现及意义. 地球科学——中国地质大学学报, 29(3): 333-339. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200403011.htm
      [32] 郑有业, 高顺宝, 张大权, 等, 2006. 西藏驱龙超大型斑岩铜矿床成矿流体对成矿的控制. 地球科学——中国地质大学学报, 31(3): 349-354. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200603009.htm
      [33] 郑有业, 张刚阳, 高顺宝, 等, 2008. 西藏沙让斑岩型钼矿床的发现意义及成岩成矿时代约束. 见: 陈毓川编. 第九届全国矿床会议论文集. 北京: 地质出版社, 674-676.
    • 加载中
    图(4) / 表(2)
    计量
    • 文章访问数:  200
    • HTML全文浏览量:  45
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2011-11-15
    • 网络出版日期:  2021-11-09
    • 刊出日期:  2012-05-01

    目录

      /

      返回文章
      返回