Mixed-Layer Clay Minerals in the Xuancheng Red Clay Sediments, Xuancheng, Anhui Province
-
摘要: 为研究长江中下游红土剖面中粘土矿物的特征及其成因意义, 对安徽宣城红土剖面中粘土矿物进行深入、系统的X射线衍射分析.结果表明, 宣城剖面各土壤层中粘土矿物成分基本一致, 主要为蛭石、伊利石、高岭石, 以及粘土矿物过渡相. 由采自剖面上部样品的X射线衍射图可知, 经乙二醇饱和后7 Å衍射峰可分解为7.15、7.60和7.92 Å三部分, 表明除了高岭石(7.15 Å)外, 还存在高岭晶层含量分别为~80%和~95%的2种高岭-蒙脱石过渡相, 并以前者为主; 剖面下部样品在乙二醇饱和后, 7 Å衍射峰可分解为7.16、7.79和8.35 Å等3个衍射峰, 其中8.35 Å峰衍射强度很小, 表明除了高岭石外, 样品中存在高岭晶层含量为~90%和~43%的高岭-蒙脱石过渡相, 后者含量甚少.甲酰胺饱和结果表明, 高岭-蒙脱石混层粘土矿物相中高岭晶层为埃洛石相.加热试验的衍射图中10 Å衍射峰强度明显增强, 证实高岭相中含有一定数量的来源于绿泥石风化的蒙脱石间层; 而10 Å衍射峰的低角度一侧没有出现拖尾现象, 则指示高岭-蒙脱石混层矿物中的蒙脱石不是简单的羟基间层蒙脱石.此外, 红土剖面中还普遍出现过渡性粘土矿物伊利石-蒙脱石混层和伊利石-蛭石混层粘土矿物.大量过渡性粘土矿物相的出现, 从成土作用的角度上说明红土沉积物经历了沉积-风化、以及多期风化作用叠加, 而且在沉积-风化成土过程中, 气候环境变化于强烈化学风化的温暖、季节性干旱和强烈风化淋滤的温暖而更加潮湿的条件.蛭石-伊利石混层粘土矿物仅发育于红土剖面上部, 表明总体上剖面上部的化学风化程度低于剖面下部.Abstract: Clay species of the Xuancheng red clay sediments were investigated using X-ray diffraction (XRD) method to understand the clay mineralogy and its genesis significance of the sediments in the middle to lower reaches of the Yangtze River, South China. Our results show that soil layers of the laterite profile have similar clay mineral compositions of mainly vermiculite, illite, kaolinite, and mixed-layer clays. In the XRD patterns of clay separates, there was weak peak in lower angle side of 7 Å peak, which moved towards lower angle after glycolated treatment, indicating the presence of kaolin-smectite mixed-layer clays. The 7 Å peak of the representative sample (X-18) of the upper soil profile was decomposed into three components of 7.15, 7.60, and 7.92 Å respectively, suggesting that there exists kaolinite, as well as two kaolin-smectite mixed-layer clays, with ~80% and ~95% kaolin layers respectively, and with the former in abundance and the latter in relatively less abundance. The 7 Å peak of sample (X-160) of the lower soil profile contains three components of 7.16, 7.79, and 8.35 Å respectively, with the notably weak peak of 8.35 Å suggesting that there are kaolinite and two kaolin-smectite mixed-layer clays of ~90% and ~43% kaolin layers respectively, with the latter only present in trace amounts. The intensity of the 10 Å peak increased notably with a decrease of the low-angle shoulder on the kaolinite (001) peak after formamide treatment, suggesting that kaolin in the mixed-layer kaolin-smectites is halloysite. On being heated to 400 ℃, the 10 Å peak became much more intense, indicating that certain amounts of kaolin phase derived from smectite layers with chlorite origin. No low-angle tail was observed on the 10 Å peak when heated to 600 ℃, indicating that the interstratified smectite component was not hydroxy interlayered. Mixed-layer illite-smectite and illite-vermiculite were also observed in the Xuancheng red clay sediments. The occurrence of abundant mixed-layer clays in the red clay profile suggests that the red earth sediments underwent overlap of deposit-weathering and multi-staged weathering processes. In the deposit-weathering pedogenesis process, the climate fluctuated between warm/seasonally dry and warm/humid conditions. The presence of mixed-layer illite-vermiculite in upper section indicates that the weathering degree of upper section is generally lower than that of the lower section.
-
Key words:
- mixed-layer /
- clay minerals /
- X-ray diffraction /
- red clay sediments /
- Xuancheng
-
图 2 宣城红土剖面的岩性特征(测年结果引自Hong et al., 2010a)
Fig. 2. Description of the basic lithological layers of the Xuancheng section
-
[1] Brinkman, R., Ferrolysis, 1970. A hydromorphic soil forming process. Geoderma, 3(3): 199-206. doi: 10.1016/0016-7061(70)90019-4 [2] Bronger, A., Winter, R., Sedov, S., 1998. Weathering and clay mineral formation in two Holocene soils and in buried paleosols in Tadjikistan: towards a Quaternary paleoclimatic record in Central Asia. Catena, 34(1-2): 19-34. doi: 10.1016/S0341-8162(98)00079-4 [3] Catt, J.A., 1991. Soils as indicators of quaternary climatic change in mid-latitude regions. Geoderma, 51(1-4): 167-187. doi: 10.1016/0016-7061(91)90070-A [4] Churchman, G.J., Slade, P.G., Self, P.G., et al., 1994. Nature of interstratified kaolin-smectites in some Australian soils. Australian Journal of Soil Research, 32(4): 805-822. doi: 10.1071/SR9940805 [5] Churchman, G.J., Theng, B.K.G., 1984. Interactions of halloysites with amides: mineralogical factors affecting complex formation. Clay Minerals, 19(2): 161-175. doi: 10.1180/claymin.1984.019.2.04 [6] Costantini, E.A.C., Makeev, A., Sauer, D., 2009. Recent developments and new frontiers in paleopedology. Quaternary International, 209(1-2): 1-5. doi: 10.1016/j.quaint.2009.08.005 [7] Deepthy, R., Balakrishnan, S., 2005. Climatic control on clay mineral formation: evidence from weathering profiles developed on either side of the western Ghats. Journal of Earth System Science, 114(5): 545-556. doi: 10.1007/BF02702030 [8] Delvaux, B., Herbillon, A., 1995. Pathways of mixed layer kaolin-smectite formation in soils. In: Clays controlling the environment, Proceedings of the 10th International Clay Conference, Adelaide, Australia, 457-461. [9] Dudek, T., Cuadros, J., Huertas, J., 2007. Structure of mixed-layer kaolinite-smectite and smectite-to-kaolinite transformation mechanism from synthesis experiments. American Mineralogist, 92(1): 179-192. doi: 10.2138/am.2007.2218 [10] Foscolos, A.E., Rutter, N.W., Hughes, O.L., 1977. The use of pedological studies in interpreting the Quaternary history of central Yukon Territory. Energy, Mines, and Resources, Canada, Ottwa, Canada, QE185. A43(271): 48. [11] Hong, H.L., Gu, Y.S., Li, R.B., et al., 2010a. Clay mineralogy and geochemistry and their palaeoclimatic interpretation of the Pleistocene deposits in the Xuancheng section, southern China. Journal of Quaternary Science, 25(5): 662-674. doi: 10.1002/jqs.1340 [12] Hong, H.L., Gu, Y.S., Yin, K., et al., 2010b. Red soils with white net-like veins and climate significance in South China. Geoderma, 160(2): 197-207. doi: 10.1016/j.geoderma.2010.09.019 [13] Hong, H.L., 2010. A review on paleoclimate interpretation of clay minerals. Geological Science and Technology Information, 29(1): 1-8 (in Chinese with English abstract). [14] Hu, X.F., Cheng, T.F., Wu, H.X., 2003. Do multiple cycles of Aeolian deposit-pedogenesis exist in the reticulate red clay sections in southern China? Chinese Science Bulletin, 48(12): 1251-1258. doi: 10.1007/BF03183947 [15] Jackson, M.L., 1985. Soil chemical analysis: advanced course, 2nd edition. University of Wisconsin-Madison Libraries, Madison, Wisconsin. [16] Jaynes, W.F., Bigham, J.M., Smeck, N.E., et al., 1989. Interstratified 1∶1-2∶1 mineral formation in a polygenetic soil from southern Ohio. Soil Science Society of America Journal, 53(6): 1888-1894. doi: 10.2136/sssaj1989.03615995005300060046x [17] Li, Q.K., 1983. Red earth in China. Science Press, Beijing (in Chinese). [18] Liang, B., Xie, S.C., Gu, Y.S., et al., 2005. Distribution of n-alkanes as indicative of paleovegetation change in Pleistocene red earth in Xuancheng, Anhui. Earth Science—Journal of China University of Geosciences, 30(2): 129-132 (in Chinese with English abstract). [19] Norrish, K., Pickering, J.G., 1983. Clay minerals, soil: an Australian Viewpoint. CSIRO, Melbourne and Academic Press, London, 281-308. [20] Pal, D.K., Deshpande, S.B., Venugopal, K.R., et al., 1989. Formation of di- and trioctahedral smectite as evidence for paleoclimatic changes in southern and central Peninsular India. Geoderma, 45(2): 175-184. doi: 10.1016/0016-7061(89)90049-9 [21] Pavlidis, Y.A., Shcherbakov, F.A., Shevchenko, A.Y., 1995. Clay-minerals in bottom sediments of White Sea and Cuba shelves—Comparison of geology and climate. Oceanology, 35(1): 121-127. [22] Robert, C., Kennett, J.P., 1994. Antarctic subtropical humid episode at the Paleocene-Eocene boundary: clay mineral evidence. Geology, 22(3): 211-214. doi: 10.1130/0091-7613(1994)022<0211:ASHEAT>2.3.CO;2 [23] Ryan, P.C., Huertas, F.J., 2009. The temporal evolution of pedogenic Fe-smectite to Fe-kaolin via interstratified kaolin-smectite in a moist tropical soil chronosequence. Geoderma, 151(1-2): 1-15. doi: 10.1016/j.geoderma.2009.03.010 [24] Schultz, L.G., Shepard, A.O., Blackmon, P.D., et al., 1971. Mixed-layer kaolinite-montmorillonite from the Yucatan Peninsula, Mexico. Clays and Clay Minerals, 19: 137-150. doi: 10.1346/CCMN.1971.0190302 [25] Sheldon, N.D., Tabor, N.J., 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews, 95(1-2): 1-52. doi: 10.1016/j.earscirev.2009.03.004 [26] Singer, A., 1980. The paleoclimatic interpretation of clay minerals in soils and weathering profiles. Earth-Science Reviews, 15(4): 303-326. doi: 10.1016/0012-8252(80)90113-0 [27] Singer, A., 1993. Weathering patterns in representative soils of Guangxi Province, South-East China, as indicated by detailed clay mineralogy. Journal of Soil Science, 44(1): 173-188. doi: 10.1111/j.1365-2389.1993.tb00443.x [28] Srivastaval, P., Parkash, B., Pal, D.K., 1998. Clay minerals in soils as evidence of Holocene climatic change, Central Indo-Gangetic Plains, North-Central India. Quaternary Research, 50: 230-239. doi: 10.1006/qres.1998.1994 [29] rodoń, J., 1999. Nature of mixed-layer clays and mechanisms of their formation and alteration. Annual Review of Earth and Planetary Sciences, 27: 19-53. doi: 10.1146/annurev.earth.27.1.19 [30] Vicente, M.A., Elsass, F., Molina, E., et al., 1997. Palaeoweathering in slates from the Iberian Hercynian Massif (Spain): investigation by TEM of clay mineral signatures. Clay Minerals, 32(3): 435-451. doi: 10.1180/claymin.1997.032.3.06 [31] Vingiani, S., Righi, D., Petit, S., et al., 2004. Mixed-layer kaolinite-smectite minerals in a red-black soil sequence from basalt in Sardinia (Italy). Clays and Clay Minerals, 52(4): 473-483. doi: 10.1346/CCMN.2004.0520408 [32] Vogt, T., Clauer, N., Larqué, P., 2010. Impact of climate and related weathering processes on the authigenesis of clay minerals: examples from circum-Baikal region, Siberia. Catena, 80(1): 53-64. doi: 10.1016/j.catena.2009.08.008 [33] Wilson, M.J., 1999. The origin and formation of clay minerals in soils: past, present and future perspectives. Clay Minerals, 34(1): 7-25. doi: 10.1180/000985599545957 [34] Xi, C.F., 1990. Soil condition recording the long term climate change. Quaternary Sciences, 1: 82-89 (in Chinese with English abstract). http://www.researchgate.net/publication/285750927_Soil_condition_recording_the_long_term_climatic_change [35] Xiong, S.F., Sun, D.H., Ding, Z.L., 2002. Aeolian origin of the red earth in Southeast China. Journal of Quaternary Science, 17(2): 181-191. doi: 10.1002/jqs.663 [36] Yin, Q.Z., Guo, Z.T., 2006. The vermiculated red soil in southern China and its implications for the strength extreme of East Asian. Chinese Science Bulletin, 51(2): 186-193 (in Chinese). doi: 10.1360/972005-490 [37] Zhao, Q.G., Yang, H., 1995. A preliminary study on red earth and changes of Quarternary environment in South China. Quarternary Sciences, 2: 107-116 (in Chinese with English abstract). [38] Zhu, J.J., 1988. Genesis and research significance of the plinthitic horizon. Geographical Research, 7(4): 12-20 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DLYJ198804001.htm [39] Zhu, L.D., Zhou, S.Z., Li, F.Q., et al., 2007. Geochemistry behavior of major elements of Pleistocene red earth in South China. Geochimica, 36(3): 295-302 (in Chinese with English abstract). [40] Zhu, L.J., 1996. Environmental significance of 1.4 nm interstratified mineral from the laterite developed on the carbonate rock in Guizhou Province. Bulletin of Mineralogy, Petrology and Geochemistry, 15(3): 167-170 (in Chinese with English abstract). [41] Zhu, Z.Y., Wang, J.D., Huang, B.L., et al., 1995. Red soil, loess and global change. Quarternary Sciences, 3: 267-277 (in Chinese with English abstract). [42] 洪汉烈, 2010. 黏土矿物古气候意义研究的现状与展望. 地质科技情报, 29(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201001000.htm [43] 李庆奎, 1983. 中国红壤. 北京: 科学出版社. [44] 梁斌, 谢树成, 顾延生, 等, 2005. 安徽宣城更新世红土正构烷烃分布特征及其古植被意义. 地球科学, 30(2): 129-132. http://www.earth-science.net/article/id/1428 [45] 席承藩, 1990. 土壤是气候变化的长期记录者. 第四纪研究, 1: 82-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ199001009.htm [46] 尹秋珍, 郭正堂, 2006. 中国南方的网纹红土与东亚季风的异常强盛期. 科学通报, 51(2): 186-193. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200602012.htm [47] 赵其国, 杨浩, 1995. 中国南方红土与第四纪环境变迁的初步研究. 第四纪研究, 2: 107-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ502.001.htm [48] 朱景郊, 1988. 网纹红土的成因及其研究意义. 地理研究, 7(4): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ198804001.htm [49] 朱丽东, 周尚哲, 李凤全, 等, 2007. 南方更新世红土氧化物地球化学特征. 地球化学, 36(3): 295-302. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200703009.htm [50] 朱立军, 1996. 碳酸盐岩红土中1.4 nm间层矿物及其环境意义. 矿物岩石地球化学通报, 15(3): 167-170. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH603.006.htm [51] 朱照宇, 王俊达, 黄宝林, 等, 1995. 红土·黄土·全球变化. 第四纪研究, 3: 267-277. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ503.008.htm