• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    北江河水溶解无机碳同位素的季节变化

    贾国东 陈法锦 邓文锋

    贾国东, 陈法锦, 邓文锋, 2012. 北江河水溶解无机碳同位素的季节变化. 地球科学, 37(2): 365-369. doi: 10.3799/dqkx.2012.043
    引用本文: 贾国东, 陈法锦, 邓文锋, 2012. 北江河水溶解无机碳同位素的季节变化. 地球科学, 37(2): 365-369. doi: 10.3799/dqkx.2012.043
    JIA Guo-dong, CHEN Fa-jin, DENG Wen-feng, 2012. Seasonal Variations of Dissolved Inorganic Carbon Isotope in the Beijiang River. Earth Science, 37(2): 365-369. doi: 10.3799/dqkx.2012.043
    Citation: JIA Guo-dong, CHEN Fa-jin, DENG Wen-feng, 2012. Seasonal Variations of Dissolved Inorganic Carbon Isotope in the Beijiang River. Earth Science, 37(2): 365-369. doi: 10.3799/dqkx.2012.043

    北江河水溶解无机碳同位素的季节变化

    doi: 10.3799/dqkx.2012.043
    基金项目: 

    中国科学院知识创新工程项目 kzcx2-yw-138-2

    详细信息
      作者简介:

      贾国东(1969-), 博士, 研究员, 主要从事生物地球化学和同位素地球化学研究.E-mail: jiagd@gig.ac.cn

    • 中图分类号: P641.3

    Seasonal Variations of Dissolved Inorganic Carbon Isotope in the Beijiang River

    • 摘要: 在有碳酸盐岩分布的河流流域, 河水地球化学主要反映的是风化速率较高的碳酸盐矿物风化的信息, 而硅酸盐矿物风化的信息往往被掩盖掉.北江流域碳酸盐岩和硅酸岩分布广泛, 为追踪其中的硅酸盐矿物风化的信息, 分析了北江河水中溶解无机碳同位素的时空变化.河水样品按4个季节自北江的上游到下游采集6个样点, 分析结果显示, 除上游武江的采样点同位素值季节变化不大外, 中下游采样点的同位素值有明显季节变化, 主要表现在6月份的δ13CDIC显著变轻(-16‰~-19‰).在详细剖析矿物风化过程对碳同位素的影响后, 指出除了显著的碳酸盐矿物风化过程外, 北江流域在夏季还存在明显的硅酸盐矿物风化过程, 大大提高了流域的碳汇作用.

       

    • 图  1  北江流域示意

      灰色区域为碳酸盐岩或含碳酸盐地层,其中的圆点区代表被覆盖的碳酸盐岩地区.转绘自1∶250万广东省水文地质图.五星符号和对应的数字表示采样点的位置

      Fig.  1.  Schematic of the Beijiang watershed

      图  2  北江河水δ13CDIC的时空变化(采样点对应于图 1中的数字)

      Fig.  2.  Temporal and spatial variations of δ13CDIC in Beijiang River

      图  3  北江河水δ13CDIC与DIC产生过程导致的同位素理论值的比较

      Fig.  3.  Comparisons of the Beijiang River δ13CDIC with theoretical values of DIC-producing processes

    • [1] Amiotte-Suchet, P., Aubert, D., Probst, J.L., et al., 1999. δ13C pattern of dissolved inorganic carbon in a small granitic catchment: the Strengbach cage study (Vosges Mountains, France). Chem. Geol. , 159(1-4): 129-145. doi: 10.1016/S0009-2541(99)00037-6
      [2] Barth, J.A.C., Cronin, A.A., Dunlop, J., et al., 2003. Influence of carbonates on the riverine carbon cycle in an anthropogenically dominated catchment basin: evidence from major elements and stable carbon isotopes in the Lagan River (N. lreland). Chem. Geol. , 200(3-4): 203-216. doi: 10.1016/S0009-2541(03)00193-1
      [3] Blum, J.D., Gazis, C.A., Jacobson, A.D., et al., 1998. Carbonate versus silicate weathering in the Raikhot watershed within the high Himalayan crystalline series. Geology, 26(5): 411-414. doi: 10.1130/0091-7613(1998)026<0411:CVSWIT>2.3.CO;2
      [4] Brunet, F., Dubois, K., Veizer, J., et al., 2009. Terrestrial and fluvial carbon fluxes in a tropical watershed: Nyong basin, Cameroon. Chem. Geol. , 265(3-4): 563-572. doi: 10.1016/j.chemgeo.2009.05.020
      [5] Cerling, T.E., Solomon, D.K., Quade, J., et al., 1991. On the isotopic composition of carbon in soil carbon dioxide. Geochim. Cosmochim. Acta, 55(11): 3403-3405. doi: 10.1016/0016-7037(91)90498-T
      [6] Chen, F.J., Jia, G.D., 2009. Spatial and seasonal variations in δ13C and δ15N of particulate organic matter in a dam-controlled subtropical river. River Research and Applications, 25(9): 1169-1176. doi: 10.1002/rra.1225
      [7] Deng, W.F., Wei, G.J., Li, X.H., 2005. Online analysis of carbon and oxygen isotopic compositions of impure carbonate. Geochimica, 34(5): 495-500 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200505007.htm
      [8] Douglas, T.A., 2006. Seasonality of bedrock weathering chemistry and CO2 consumption in a small watershed, the White River, Vermont. Chem. Geol. , 231(3): 236-251. doi: 10.1016/j.chemgeo.2006.01.024
      [9] Horton, T.W., Chamberlain, C.P., Fantle, M., et al., 1999. Chemical weathering and lithologic controls of water chemistry in a high-elevation river system: Clark's Fork of the Yellowstone River, Wyoming and Montana. Water Res. Res. , 35(5): 1643-1655. doi: 10.1029/1998WR900103
      [10] Jiao, S.L., Tao, Z., Gao, Q.Z., et al., 2008. Spatio-temporal variation of the stable isotopic composition of riverine dissolved inorganic carbon of the Xijiang inner estuary. Acta Geographica Sinica, 63(5): 553-560 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLXB200805013.htm
      [11] Jiao, S.L., Gao, Q.Z., Liu, K., 2009. Riverine DIC and its δ13CDIC of the Xijiang and the Beijiang tributaries in the Pearl River basin, South China. Acta Scientiarum Naturalium Universitatis Sunyatseni, 48(2): 99-105 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZSDZ200902020.htm
      [12] Li, J.Y., Zhang, J., 2002. Weathering of watershed basins and global climatic change. Advance in Earth Sciences, 17(3): 411-419 (in Chinese with English abstract). http://www.adearth.ac.cn/en/y2002/v17/i3/411
      [13] Meybeck, M., 1987. Global chemical weathering of surficial rocks estimated from river dissolved loads. Amer. J. Sci. , 287: 401-428. doi: 10.2475/ajs.287.5.401
      [14] Telmer, K., Veizer, J., 1999. Carbon fluxes, pCO2 and substrate weathering in a large northern river basin, Canada: carbon isotope perspectives. Chem. Geol. , 159(1-4): 61-86. doi: 10.1016/S0009-2541(99)00034-0
      [15] Wachniew, P., 2006. Isotopic composition of dissolved inorganic carbon in a large polluted river: the Vistula, Poland. Chem. Geol. , 233(3-4): 293-308. doi: 10.1016/j.chemgeo.2006.03.012
      [16] Yang, C., Telmer, K., Veizer, J., 1996. Chemical dynamics of the "St. Lawrence" riverine system: δDH2O, δ18OH2O, δ13CDIC, δ34Ssulfate, and dissoled 87Sr/86Sr. Geochim. Cosmochim. Acta, 60(5): 851-866. doi: 10.1016/0016-7037(95)00445-9
      [17] Zhang, J., Quay, P.D., Walbur, D.O., 1995. Carbone isotope fractionation during gas-water exchange and dissolution of CO2. Geochim. Cosmochim. Acta, 59(1): 107-114. doi: 10.1016/0016-7037(95)91550-D
      [18] 邓文峰, 韦刚健, 李献华, 2005. 不纯碳酸盐碳氧同位素组成的在线分析. 地球化学, 34(5): 495-500. doi: 10.3321/j.issn:0379-1726.2005.05.007
      [19] 焦树林, 高全洲, 刘昆, 2009. 珠江流域西江、北江河流溶解无机碳及其稳定同位素组成特征. 中山大学学报(自然科学版), 48(2): 99-105. doi: 10.3321/j.issn:0529-6579.2009.02.021
      [20] 焦树林, 陶贞, 高全洲, 等, 2008. 西江河口段溶解无机碳稳定同位素组成的时空变化. 地理学报, 63(5): 553-560. doi: 10.3321/j.issn:0375-5444.2008.05.011
      [21] 李晶莹, 张经, 2002. 流域盆地的风化作用与全球气候变化. 地球科学进展, 17(3): 411-419. doi: 10.3321/j.issn:1001-8166.2002.03.018
    • 加载中
    图(3)
    计量
    • 文章访问数:  3103
    • HTML全文浏览量:  160
    • PDF下载量:  62
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-08-20
    • 刊出日期:  2012-03-15

    目录

      /

      返回文章
      返回