Sulfur Isotopic Evidence for Biological Karst of Sulfate Rocks in Burial Environment
-
摘要: 为了揭示油气盆地埋藏环境中碳酸盐岩和硫酸盐岩共生时的岩溶发育机制, 以硫酸盐岩为研究对象, 采用室内模拟实验与野外实测资料相结合的方法, 分析了温度、SO42-浓度和时间等因素对水-岩-细菌封闭系统内稳定硫同位素的影响, 并指出硫同位素对地球化学作用的指示意义.结果表明, 细菌硫酸盐还原形成的H2S中硫同位素分馏明显, 并受系统的温度和开放性等因素影响.结合鄂尔多斯盆地奥陶系风化壳中充填的黄铁矿硫同位素特征, 提出了鄂尔多斯盆地奥陶系岩溶的生物成因模式; 揭示了风化壳顶部的黄铁矿化与风化壳下部压释水岩溶共生的机制, 建立了生物岩溶发育的硫同位素地球化学标志.研究成果拓宽了岩溶的压释水成因机制.Abstract: The purpose of this study is to explore the biological karst developing mechanism at the coexistence condition of the sulfate and carbonate rock. The study focuses on the geochemical processes in water-rock-bacteria system by tracing the stable sulfur isotope (34S) fractionation through laboratory experiment combined with the isotope data of the pyrite filling in Ordovician weathering crust in the Ordos basin. The results suggest that the H2S produced by bacterial sulfate reduction (BSR) is characterized by a significant isotope fractionation of 34S, which was controlled by temperature and the SO42- concentration from the dissolution of sulfate rocks in the system. Bacterial sulfate reduction in the experimental system provides an evidence for biological karst on sulfate rocks, and gives a good interpretation for the feature of karst development below the Ordovician weathering crust, Ordos basin. In addition, the presence of pyrite and compacted released water karst confirms that bacterial sulfate reduction took place within the weathering crust during the burial stage. The results provide a new perspective for the analysis of the formation of oil-gas reservoir and the exploration of petroleum gas geology resources.
-
Key words:
- Ordos basin /
- bacterial sulfate reduction /
- sulfur isotopes /
- pyrite /
- biological karst /
- hydrogeology
-
图 1 不同反应温度和时间条件下各种硫化物中的硫同位素特征(数据来源于表 1)
Fig. 1. Characteristic of sulfur isotope in the experimental conditions of 35℃ and 50℃ with time
表 1 水-岩-细菌反应系统内硫酸盐和硫化物的硫同位素(‰)
Table 1. Values of 34S in sulfate and sulfide dissolved in the water-rock-bacteria system
反应时间(d) 35℃ 50℃ δ34SSO42- △1 δ34SH2S △2 δ34SSO42--δ34SH2S δ34SSO42- △1 δ34SH2S △2 δ34SSO42--δ34SH2S 6 27.79 2.19 15.18 10.42 12.61 27.47 1.87 12.49 13.11 14.98 10 28.69 3.09 18.72 6.88 9.97 28.16 2.56 13.93 11.67 14.23 13 27.02 1.42 26.55 0.95 14.63 10.97 11.92 17 26.39 0.79 18.35 7.25 8.04 25.98 0.38 13.46 12.14 12.52 21 26.56 0.96 14.06 11.54 12.50 25 26.29 0.69 18.70 6.90 7.59 25.92 0.32 14.05 11.55 11.87 31 26.21 0.61 26.03 0.43 14.02 11.58 12.01 33 25.97 0.37 17.96 7.64 8.01 25.86 0.26 15.07 10.53 10.79 均值 26.91 1.31 17.78 7.82 9.24 26.57 0.97 13.96 11.64 12.60 注:①硫同位素测试由中国科学院地质与地球物理研究所稳定同位素实验室完成;②△1是指溶蚀液中SO42-的δ34SSO42-与石膏的δ34S的差值;③△2是指石膏的δ34S与还原生成H2S的δ34SH2S的差值. 表 2 鄂尔多斯盆地含硫物质的硫同位素
Table 2. Values of sulfur isotope in anhydrite and pyrite in the weathering crust of Ordovician, Ordos Basin
井号 井深(m) 层位 矿物名称 δ34S(‰) 样品来源 数据来源 陕27井 O1m五1 结核状硬石膏 27.90 白云岩中的硬石膏斑晶 郑聪斌等,1995 陕12井 O1m五1 斑晶状硬石膏 27.10 白云岩中的硬石膏斑晶 郑聪斌等,1995 陕42井 C2b 黄铁矿 -5.20 风化壳 郑聪斌等,1997 陕42井 O1m五1-1 黄铁矿 -2.64 风化壳 章贵松等,2000 陕42井 O1m五1-1 黄铁矿 6.60 洞穴 郑聪斌等,1997 陕42井 O1m五1-2 黄铁矿 10.98 充填物 郑聪斌等,1997 Z110 O1m五1-1 黄铁矿 22.20 郑聪斌等,1997 陕42井 O1m五1 斑晶状硬石膏 27.70 白云岩中的硬石膏斑晶 郑聪斌等,1995 陕42井 层状硬石膏 28.00 白云岩上下围岩的层状硬石膏 郑聪斌等,1996 陕42井 层状硬石膏 27.80 白云岩上下围岩的层状硬石膏 郑聪斌等,1996 陕16 O1m五1-3 黄铁矿 -5.86 章贵松等,2000 陕16 O1m五1-4 黄铁矿 9.52 章贵松等,2000 C1 O1m五4-1 黄铁矿 22.60 章贵松等,2000 榆70 2757.14 马五11 黄铁矿 -4.47 溶孔、溶洞里的充填物黄铁矿 黄道军等,2009 榆70 2758.50 马五11 黄铁矿 6.60 溶孔、溶洞里的充填物黄铁矿 黄道军等,2009 榆70 2759.71 马五11 黄铁矿 10.22 溶孔、溶洞里的充填物黄铁矿 黄道军等,2009 榆70 2760.73 马五11 黄铁矿 23.19 溶孔、溶洞里的充填物黄铁矿 黄道军等,2009 -
[1] Bai, W.H., Lü, X.M., Li, X.J., et al., 2002. The mode of palaeokarstification and the fine reconstruction of the palaeogeomorphology in the karst basin: taking Ordovician karst in eastern Ordos basin for example. Geoscience, 16(3): 292-298 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200203013.htm [2] Bolliger, C., Schroth, M.H., Bernasconi, S.M., et al., 2001. Sulfur isotope fractionation during microbial sulfate reduction by toluene-degrading bacteria. Geochimica et Cosmochimica Acta, 65(19): 3289-3298. doi: 10.1016/S0016-7037(01)00671-8 [3] Cai, C.F., Hu, W.S., Worden, R.H., 2001. Thermochemical sulphate reduction in Cambro-Ordovician carbonates in Central Tarim. Marine and Petroleum Geology, 18(6): 729-741. doi: 10.1016/S0264-8172(01)00028-9 [4] Cai, C.F., Ma, Z.F., Yang, X.Z., 1998. Secondary alteration of trapped oil and natural gas. China Offshore Oil and Gas (Geology), 12(2): 122-126 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD199802014.htm [5] Canfield, D.E., 2001. Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochimica et Cosmochimica Acta, 65(7): 1117-1124. doi: 10.1016/S0016-7037(00)00584 [6] Canfield, D.E., Habicht, K.S., Thamdrup, B., 2000. The archean sulfur cycle and the early history of atmospheric oxygen. Science, 288(5466): 658-661. doi: 10.1126/science.288.5466.658 [7] Canfield, D.E., Olesen, C.A., Cox, R.P., 2006. Temperature and its control of isotope fractionation by a sulfate-reducing bacterium. Geochimica et Cosmochimica Acta, 70(3): 548-561. doi: 10.1016/j.gca.2005.10.028 [8] Chang, H.J., Chu, X.L., Huang, J., et al., 2007. Sulfur isotope fractionation accompanying bacterial action under sedimentary condition. Geological Review, 53(6): 807-813 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200706017.htm [9] Clark, I., Fritz, P., 1997. Environmental isotopes in hydrogeology. CRC Press, Boca Raton. [10] Dai, J.Y., He, S.L., 2009. Causation and implication of the coincidence of formation water and hydrogen sulphide in Jingbian gas field. Natural Gas Geoscience, 20(2): 287-291 (in Chinese with English abstract). http://www.researchgate.net/publication/292710919_Causation_and_implication_of_the_coincidence_of_formation_water_and_hydrogen_sulphide_in_Jingbian_gas_field [11] Fu, J.H., Zheng, C.B., 2001. Evolution between North China Sea and Qilian Sea of the Ordovician and the characteristics of lithofacies palaeogeography in Ordos basin. Journal of Palaeogeography, 3(4): 25-34 (in Chinese with English abstract). http://www.researchgate.net/publication/285225069_Evolution_between_north_china_sea_and_qilian_sea_of_the_ordovician_and_the_characteristics_of_lithofacies_plaeogeography_in_ordos_basin [12] Goldhaber, M.B., Kaplan, I.R., 1980. Mechanisms of sulfur incorporation and isotope fractionation during early diagenesis in sediments of the gulf of California. Marine Chemistry, 9(2): 95-143. doi: 10.1016/0304-4203(80)90063-8 [13] Harrison, A.G., Thode, H.G., 1958. Mechanism of the bacterial reduction of sulphate from isotope fractionation studies. Transactions of the Faraday Society, 54: 84-92. doi: 10.1039/TF9585400084 [14] He, Z.X., Zheng, C.B., Wang, C.L., et al., 2005. Cases of discovery and exploration of marine fields in China (part 2): Jingbian gas field, Ordos basin. Marine Origin Petroleum Geology, 10(2): 37-44 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXYQ200502007.htm [15] Hill, C.A., 1995. H2S-related porosity and sulfuric acid oil-field karst. In: Budd, D.A., Saller, A.H., Harris, P.M., eds., Unconformities and porosity in carbonate strata. American Association Petroleum Geology Memoir, 63: 301-306. http://www.researchgate.net/publication/279761115_H2S-Related_Porosity_and_Sulfuric_Acid_Oil-Field_Karst [16] Hill, C.A., 2000. Overview of the geologic history of cave development in the Guadalupe Mountains, New Mexico. Journal of Cave and Karst Studies, 62(2): 60-71. http://nss2013.caves.org/pub/journal/PDF/V62/v62n2-Hill.pdf [17] Hose, L.D., Palmer, A.N., Palmer, M.V., et al., 2000. Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment. Chemical Geology, 169(3-4): 399-423. doi: 10.1016/S0009-2541(00)00217-5 [18] Huang, D.J., Wen, C.X., Ji, H.K., et al., 2009. Characteristics and key controlling factors of Ordovician weathering karst crust reservoir in the eastern part of Ordos basin. Marine Origin Petroleum Geology, 14(3): 10-18 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_marine-origin-petroleum-geology_thesis/0201253741379.html [19] Huang, S.J., Qing, H.R., Hu, Z.W., et al., 2007. Influence of sulfate reduction on diagenesis of Feixianguan carbonate in Triassic, NE Sichuan basin of China. Acta Sedmentologica Sinica, 25(6): 815-824 (in Chinese with English abstract). [20] Kiyosu, Y., 1980. Chemical reduction and sulfur-isotope effects of sulfate by organic matter under hydrothermal conditions. Chemical Geology, 30(1-2): 47-56. doi: 10.1016/0009-2541(80)90115-1 [21] Klimchouk, A.B., 1997. The role of karst in the genesis of sulfur deposits, Pre-Carpathian region, Ukraine. Environmental Geology, 31(1-2): 1-20. doi: 10.1007/s002540050158 [22] Li, L.H., Dang, Z., Li, S.H., 2005. Domesticated cultivation of sulfate-reducing bacteria and its efficiency of sulfate removal. Bulletin of Mineralogy, Petrology and Geochemistry, 24(2): 144-147 (in Chinese with English abstract). http://www.researchgate.net/publication/289080520_Domesticated_cultivation_of_sulfate-reducing_bacteria_and_its_efficiency_of_sulfate_removal [23] Machel, H.G., 2001. Bacterial and thermochemical sulfate reduction in diagenetic settings-old and new insights. Sedimentary Geology, 140(1-2): 143-175. doi: 10.1016/S0037-0738(00)00176-7 [24] Machel, H.G., Krouse, H.R., Sassen, R., 1995. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Applied Geochemistry, 10(4): 373-389. doi: 10.1016/0883-2927(95)00008-8 [25] Scherer, S., Neuhaus, K., 2002. Life at low temperatures. Springer Verlag, New York. [26] Trudinger, P.A., Chambers, L.A., 1985. Low temperature sulphate reduction: biological versus abiological. Canadian Journal of Earth Sciences, 22(12): 1910-1918. doi: 10.1139/e85-207 [27] Wan, X.N., Shi, Y.C., Zheng, C.B., et al., 1997. Paleokarst self-closed system and the distribution of gas & water in middle of Shan-Gan-Ning basin. Journal of Chengdu University of Technology, 24(Suppl. ): 136-141(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG7S1.020.htm [28] Wang, X.L., Wang, C.L., Chen, Z.L., et al., 2005. Study of Ordovician weathering crust karst reservoirs in Ordos basin. Special Oil and Gas Reservoirs, 12(3): 32-35 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TZCZ200503011.htm [29] Xi, S.L., Li, Z.H., Wang, X., et al., 2006. Distribution and exploration potential of Ordovician reservoir in Ordos basin. Oil & Gas Geology, 27(3): 405-412 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200603016.htm [30] Xi, S.L., Zheng, C.B., Xia, R.Y., 2005. Geochemical model of compaction released water karst in the Ordovician of Ordos basin. Acta Sedmentologica Sinica, 23(2): 354-360 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200502024.htm [31] Zhang, F.E., Zhang, S., Qi, J.X., et al., 2010. Bacterial mechanism of the development of sulfate karst in burial environment. Earth Science—Journal of China University of Geosciences, 35(1): 146-154 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.015 [32] Zhang, G.S., Zheng, C.B., 2000. Compaction-released water karst and natural gas migration, accumulation, and reservoir formation. Carsologica Sinica, 19(3): 199-205 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGYR200003000.htm [33] Zhang, X.L., Liu, H.H., Chen, K.X., et al., 1999. The study of growing regulation of sulfate-reducing bacteria. Journal of Northwest University (Natural Science Edition), 29(5): 397-402 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDZ199905008.htm [34] Zheng, C.B., Ji, X.L., Jia, S.Y., 1995. Palaeokarst features of Ordovician weathering crust in the centre of Shan-Gan-Ning basin. Carsologica Sinica, 14(3): 280-288 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGYR503.012.htm [35] Zheng, C.B., Wang, F.Y., Jia, S.Y., 1997. Karst rock of weathered crust of Ordovician and its karstification mode in Central Shan-Gan-Ning basin. Carsologica Sinica, 16(4): 352-361 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGYR704.008.htm [36] Zheng, C.B., Wang, S.L., Jia, S.Y., 1996. Formation and evolution of caves in main production formation in the central part of Shan-Gan-Ning gasfield. Journal of Geology & Mineral Resource in North China, 11(1): 73-79 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBDZ601.010.htm [37] Zheng, Q., 2009. Effect of ecological factors on growth of sulfate-reducing bacteria. China Resources Comprehensive Utilization, 27(2): 25-27 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZWZS200902020.htm [38] Zheng, X.C., Ren, Y.X., 1998. Denudation pores and cavities in a main gas-producing formation in Ordos basin. Journal of Jianghan Petroleum Institute, 20(1): 7-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JHSX801.001.htm [39] Zheng, Y.F., Chen, J.F., 2000. Stable isotope geochemistry. Science Press, Beijing (in Chinese). [40] 拜文华, 吕锡敏, 李小军, 等, 2002. 古岩溶盆地岩溶作用模式及古地貌精细刻画——以鄂尔多斯盆地东部奥陶系风化壳为例. 现代地质, 16(3): 292-298. doi: 10.3969/j.issn.1000-8527.2002.03.013 [41] 蔡春芳, 马振芳, 杨贤州, 1998. 圈闭中油气的次生蚀变作用. 中国海上油气(地质), 12(2): 122-126. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199802014.htm [42] 常华进, 储雪蕾, 黄晶, 等, 2007. 沉积环境细菌作用下的硫同位素分馏. 地质论评, 53(6): 807-813. doi: 10.3321/j.issn:0371-5736.2007.06.015 [43] 代金友, 何顺利, 2009. 靖边气田"硫水耦合"现象的成因与启示. 天然气地球科学, 20(2): 287-291. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200902023.htm [44] 付金华, 郑聪斌, 2001. 鄂尔多斯盆地奥陶纪华北海和祁连海演变及岩相古地理特征. 古地理学报, 3(4): 25-34. doi: 10.3969/j.issn.1671-1505.2001.04.003 [45] 何自新, 郑聪斌, 王彩丽, 等, 2005. 中国海相油气田勘探实例之二: 鄂尔多斯盆地靖边气田的发现与勘探. 海相油气地质, 10(2): 37-44. doi: 10.3969/j.issn.1672-9854.2005.02.006 [46] 黄道军, 文彩霞, 季海馄, 等, 2009. 鄂尔多斯盆地东部奥陶系风化壳储层特征及主控因素分析. 海相油气地质, 14(3): 10-18. doi: 10.3969/j.issn.1672-9854.2009.03.002 [47] 黄思静, Qing, H.R., 胡作维, 等, 2007. 四川盆地东北部三叠系飞仙关组硫酸盐还原作用对碳酸盐成岩作用的影响. 沉积学报, 25(6): 815-824. doi: 10.3969/j.issn.1000-0550.2007.06.001 [48] 李连华, 党志, 李舒衡, 2005. 硫酸盐还原菌的驯化培养及脱硫性能研究. 矿物岩石地球化学通报, 24 (2): 144-147. doi: 10.3969/j.issn.1007-2802.2005.02.010 [49] 万新南, 石豫川, 郑聪斌, 等, 1997. 陕甘宁盆地中部深埋藏古岩溶自封闭体系与气、水分布特征. 成都理工学院学报, 24(增刊): 136-141. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG7S1.020.htm [50] 王雪莲, 王长陆, 陈振林, 等, 2005. 鄂尔多斯盆地奥陶系风化壳岩溶储层研究. 特种油气藏, 12(3): 32-35. doi: 10.3969/j.issn.1006-6535.2005.03.010 [51] 席胜利, 李振宏, 王欣, 等, 2006. 鄂尔多斯盆地奥陶系储层展布及勘探潜力. 石油与天然气地质, 27(3): 405-412. doi: 10.3321/j.issn:0253-9985.2006.03.017 [52] 席胜利, 郑聪斌, 夏日元, 2005. 鄂尔多斯盆地奥陶系压释水岩溶地球化学模拟. 沉积学报, 23(2): 354-360. doi: 10.3969/j.issn.1000-0550.2005.02.024 [53] 张凤娥, 张胜, 齐继祥, 等, 2010. 埋藏环境硫酸盐岩岩溶发育的微生物机理. 地球科学——中国地质大学学报, 35(1): 146-154. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201001018.htm [54] 章贵松, 郑聪斌, 2000. 压释水岩溶与天然气的运聚成藏. 中国岩溶, 19(3): 199-205. doi: 10.3969/j.issn.1001-4810.2000.03.001 [55] 张小里, 刘海洪, 陈开勋, 等, 1999. 硫酸盐还原菌生长规律的研究. 西北大学学报(自然科学版), 29(5): 397-402. doi: 10.3321/j.issn:1000-274X.1999.05.002 [56] 郑聪斌, 冀小林, 贾疏源, 1995. 陕甘宁盆地中部奥陶系风化壳古岩溶发育特征. 中国岩溶, 14(3): 280-288. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR503.012.htm [57] 郑聪斌, 王飞雁, 贾疏源, 1997. 陕甘宁盆地中部奥陶系风化壳岩溶岩及岩溶相模式. 中国岩溶, 16(4): 352-361. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR704.008.htm [58] 郑聪斌, 王世录, 贾疏源, 1996. 陕甘宁盆地中部气田主要产层孔洞的形成及演化. 华北地质矿产杂志, 11(1): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDZ601.010.htm [59] 郑强, 2009. 生态因子对硫酸盐还原菌生长的影响. 中国资源综合利用, 27(2): 25-27. doi: 10.3969/j.issn.1008-9500.2009.02.009 [60] 郑秀才, 任玉秀, 1998. 鄂尔多斯盆地主力产气层溶蚀孔洞特征. 江汉石油学院学报, 20(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX801.001.htm [61] 郑永飞, 陈江峰, 2000. 稳定同位素地球化学. 北京: 科学出版社.