• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    花岗岩母质红壤吸附水中砷(Ⅴ)的影响因素试验

    谌宏伟 柳林 彭向训 罗金明

    谌宏伟, 柳林, 彭向训, 罗金明, 2012. 花岗岩母质红壤吸附水中砷(Ⅴ)的影响因素试验. 地球科学, 37(2): 345-349. doi: 10.3799/dqkx.2012.040
    引用本文: 谌宏伟, 柳林, 彭向训, 罗金明, 2012. 花岗岩母质红壤吸附水中砷(Ⅴ)的影响因素试验. 地球科学, 37(2): 345-349. doi: 10.3799/dqkx.2012.040
    CHEN Hong-wei, LIU Lin, PENG Xiang-xun, LUO Jin-ming, 2012. Experiments of Factors Influencing Adsorption of As (V) in Water by Granite Red Soil. Earth Science, 37(2): 345-349. doi: 10.3799/dqkx.2012.040
    Citation: CHEN Hong-wei, LIU Lin, PENG Xiang-xun, LUO Jin-ming, 2012. Experiments of Factors Influencing Adsorption of As (V) in Water by Granite Red Soil. Earth Science, 37(2): 345-349. doi: 10.3799/dqkx.2012.040

    花岗岩母质红壤吸附水中砷(Ⅴ)的影响因素试验

    doi: 10.3799/dqkx.2012.040
    基金项目: 

    湖南省科技计划项目 2008sj3212

    详细信息
      作者简介:

      谌宏伟(1969-), 男, 副教授, 主要从事土壤和地下水污染防治与控制的研究.E-mail: chw1208_003@163.com

    • 中图分类号: X53

    Experiments of Factors Influencing Adsorption of As (V) in Water by Granite Red Soil

    • 摘要: 为探讨花岗岩母质红壤吸附水中砷(Ⅴ)的效果和机理, 采用静态吸附实验, 研究溶液砷初始浓度、反应时间、温度、pH值等因素对红壤吸附水中砷的影响.当溶液砷初始浓度小于5.0 mg/L时, 红壤对砷的去除率均大于97%;随着砷初始浓度增大, 去除率逐渐降低; 反应初期(0~120 min), 红壤对砷的去除率迅速增大至95.0%左右.此后, 去除率缓慢增大, 直到720 min后, 去除率达到97.0%左右, 并趋于稳定; 在砷初始浓度一定时, 红壤对砷的吸附量随着温度的升高逐渐增加, 但增加幅度较小; 红壤对砷的去除率随着体系pH值的增大呈减小趋势; 正交试验表明, 在砷初始浓度为5.0 mg·L-1、反应时间为120 min、pH为5.0及反应温度为40℃的组合下, 红壤对砷的去除率最大.

       

    • 图  1  溶液砷初始浓度对吸附作用的影响

      Fig.  1.  Affect of the As initial concentration on the adsorption

      图  2  红壤对砷的去除效果与反应时间的关系

      Fig.  2.  Relationship between the removal rate and the reaction time

      图  3  反应温度对吸附作用的影响

      Fig.  3.  Affect of the reaction temperature on the adsorption

      图  4  体系pH值对吸附作用的影响

      Fig.  4.  Affect of the pH value of the system on the adsorption

      表  1  红壤矿物组成及理化性质

      Table  1.   Minerals and physicochemical property of the red soil

      项目 有机质(g/kg) 石英(g/kg) 蒙脱石(g/kg) 伊利石(g/kg) 高岭石(g/kg) 赤铁矿(g/kg) 褐铁矿(g/kg) PZC pH
      检测值 16.30 476.00 102.50 121.60 144.70 - 108.60 8.9 5.94
      下载: 导出CSV

      表  2  4因素正交实验结果

      Table  2.   The orthogonal test of four affecting factors

      实验编号 A(mg·L-1) B(min) C D(℃) 去除率(%)
      1 1(5) 1(30) 4(8) 3(30) 92.49
      2 1 2(60) 1(5) 1(10) 92.57
      3 1 3(120) 3(7) 4(40) 90.45
      4 1 4(180) 2(6) 2(20) 95.42
      5 2(10) 1 3 2 89.72
      6 2 2 2 4 96.81
      7 2 3 4 1 83.79
      8 2 4 1 3 97.61
      9 3(15) 1 1 4 95.34
      10 3 2 4 2 87.53
      11 3 3 2 3 90.34
      12 3 4 3 1 83.16
      13 4(20) 1 2 1 89.34
      14 4 2 3 3 85.96
      15 4 3 1 4 94.82
      16 4 4 4 2 82.34
      $\overline {{\mathit{K}_1}} $ 92.31 80.37 92.42 83.16 -
      $\overline {{\mathit{K}_2}} $ 90.36 90.62 91.39 88.42 -
      $\overline {{\mathit{K}_3}} $ 86.71 91.89 87.36 90.49 -
      $\overline {{\mathit{K}_4}} $ 82.34 90.72 82.35 91.36 -
      极差(R) 3.07 4.56 7.64 1.69 -
      优水平 A1 B3 C1 D4 -
      注:A.初始浓度;B.反应时间;C.pH值;D.温度.
      下载: 导出CSV
    • [1] Aishanjiang, T.S.T., Abulai, W.S.Y., 2010. Test and analysis of fluoride and arsenic in drinking water in countryside, Aktu county, Xinjiang. Endemic Diseases Bulletin, 25(4): 60 (in Chinese).
      [2] Altundogan, H.S., Altundogan, S., Tumen, F., et al., 2000. Arsenic removal from aqueous solutions by adsorption on red mud. Waste Management, 20(8): 761-767. doi: 10.1016/S0956-053X(00)00031-3
      [3] Bai, D.K., Zhu, X.P., Wang, Y.Y., et al., 2010. Study on Adsorption behaviors o f As (Ⅲ) by manganese oxide, iron oxide and aluminium oxide. Rock and Mineral Analysis, 29(1): 55-60 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS201001019.htm
      [4] Chen, Y.N., Chen, L.Y., 2008. Migration and transformation of arsenic in groundwater. Nonferrous Metals, 60(1): 109-112 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YOUS200801029.htm
      [5] Garau, G., Silvetti, M., Deiana, S., et al., 2011. Long-term influence of red mud on As mobility and soil physico-chemical and microbial parameters in a polluted sub-acidic soil. Journal of Hazardous Materials, 185(2-3): 1241-1248. doi: 10.1016/j.jhazmat.2010.10.037
      [6] Ha, T., Wang, J.W., 2009. Study on As prevention and water improvement in Wuyuan, Hetao plain. Inner Mongolia Water Resources, 2: 92-93 (in Chinese).
      [7] Han, C.Y., Zhang, L.Y., Zou, Z.H., et al., 2011. Research progress of arsenic-contaminated wastewater treatment by adsorption method. Environmental Chemistry, 30(2): 517-523 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJHX201102022.htm
      [8] Huang, Y.Y., Liu, D.D., Qu, W.J., et al, 2010. Comparison of efficiency of sorption materials for As (Ⅲ) removal from water. Environmetal Science and Technology, 33(6E): 89-110 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FJKS2010S1027.htm
      [9] Lakshmipathiraj, P., Narasimhah, B.R.V., Prabhakar, S., et al., 2006. Adsorption of arsenate on synthetic goethite from aqueous solutions. Journal Hazardous Materials, 136(2): 281-287. doi: 10.1016/j.jhazmat.2005.12.015
      [10] Li, J., Li, J.C., Li, W., et al., 2010. Adsorption of As (Ⅲ) from water by ferric hydroxide. Water Technology, 4(5): 17-20(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSJU201005005.htm
      [11] Li, Y., Wang, Q., Jiang, C.X., et al., 2009. The genesis & harm of As-high water in mengding basin of Gengma, Yunnan. Yunnan Geology, 28(4): 367-373 (in Chinese with English abstract).
      [12] Li, Y.R., Wang, J., Luan, Z.K., et al., 2010. Arsenic removal from aqueous solution using ferrous based red mud sludge. Journal of Hazardous Materials, 177(1-3): 131-137. doi: 10.1016/j.jhazmat.2009.12.006
      [13] Liang, J., Xu, R.K., Zhao, A.H., et al., 2007. Effects of temperature and arsenate on adsorption kinetics of cadmium by an oxisol. Ecology and Environment, 16(5): 1433-1435 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRYJ200705020.htm
      [14] Liu, H.L., Liang, M.N., Zhu, Y.N., et al., 2009. The adsorption of arsenic by ferric hydroxide and its precipitation mechanism. Acta Scientiae Circumstantiae, 29(5): 1011-1020 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJXX200905021.htm
      [15] Shang, P., Sun, E.C., Li, H.M., et al., 2008. Advances in the treatment of arsenic pollution by environmental mineral materials. Acta Petrologica et Mineralogica, 27(3): 232-240 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200803009.htm
      [16] Vithanage, M., Senevirathna, W., Chandrajith, R., et al., 2007. Arsenic binding mechanisms on natural red earth: a potential substrate for pollution control. Science of the Total Environment, 379(2-3): 244-248. doi: 10.1016/j.scitotenv.2006.03.045
      [17] Wang, N., Liang, C.H., Du, L.Y., et al., 2009. Adsorption of arsenate aqueous solutions by polymeric Al/Fe modified montmorillonite. Industrial Water Treatment, 29(7): 31-35 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_industrial-water-treatment_thesis/0201217227457.html
      [18] Wang, X.P., ed., 2009. District 5: South area of red soil. China Water Resources, 7: 35-39 (in Chinese).
      [19] Zhai, H., Sun, H.X., Li, Y.L., et al., 2008. The study for sorption of trace arsenite on clay minerals. Journal of Agro-Environment Science, 27(6): 2246-2250 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NHBH200806024.htm
      [20] Zhu, Y.N., Zhang, X.H., Xie, Q.L., et al., 2003. Dependence of arsenate solubility and stability on pH value. Environmental Chemistry, 22(5): 478-484 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJHX200305013.htm
      [21] 艾山江·托石提, 阿布来·吾斯因, 2010. 新疆阿克陶县农村生活饮用水氟、水砷检测与分析. 地方病通报, 25(4): 60. https://www.cnki.com.cn/Article/CJFDTOTAL-DFBT201004033.htm
      [22] 白德奎, 朱霞萍, 王艳艳, 等, 2010. 氧化锰、氧化铁、氧化铝对砷(Ⅲ)的吸附行为研究. 岩矿测试, 29(1): 55-60. doi: 10.3969/j.issn.0254-5357.2010.01.013
      [23] 哈图, 王金伟, 2009. 河套平原腹地五原地方病区防砷改水方案初探. 内蒙古水利, 2: 92-93. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSL200902052.htm
      [24] 陈云嫩, 柴立元, 2008. 砷在地下水环境中的迁移转化. 有色金属, 60(1): 109-112. doi: 10.3969/j.issn.2095-1744.2008.01.028
      [25] 韩彩芸, 张六一, 邹照华, 等, 2011. 吸附法处理含砷废水的研究进展. 环境化学, 30(2): 517-523. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201102022.htm
      [26] 黄园英, 刘丹丹, 屈文俊, 等, 2010. 几种吸附材料对水中砷(Ⅲ)去除效果比较. 环境科学与技术, 33(6E): 89-110. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2010S1027.htm
      [27] 梁晶, 徐仁扣, 赵安珍, 等, 2007. 温度和砷酸根对砖红壤中Cd(Ⅱ)吸附动力学的影响. 生态环境, 16(5): 1433-1435. doi: 10.3969/j.issn.1674-5906.2007.05.021
      [28] 李杰, 李金成, 李伟, 等, 2010. 氢氧化铁对水中砷的吸附试验研究. 供水技术, 4(5): 17-20. doi: 10.3969/j.issn.1673-9353.2010.05.005
      [29] 刘辉利, 梁美娜, 朱义年, 等, 2009. 氢氧化铁对砷的吸附与沉淀机理. 环境科学学报, 29(5): 1011-1020. doi: 10.3321/j.issn:0253-2468.2009.05.019
      [30] 李燕, 王强, 蒋成兴, 等, 2009. 云南耿马孟定盆地高砷水成因及其危害. 云南地质, 28(4): 367-373. doi: 10.3969/j.issn.1004-1885.2009.04.002
      [31] 商平, 孙恩呈, 李海明, 等, 2008. 环境矿物材料处理砷(As)污染水的研究进展. 岩石矿物学杂志, 27(3): 232-240. doi: 10.3969/j.issn.1000-6524.2008.03.009
      [32] 王楠, 梁成华, 杜立宇, 等, 2009. 柱撑蒙脱石对水中砷(Ⅴ)的吸附研究. 工业水处理, 29(7): 31-35. doi: 10.3969/j.issn.1005-829X.2009.07.009
      [33] 王晓平责编, 2009. 分区五: 南方红壤区. 中国水利, 7: 35-39.
      [34] 翟辉, 孙红霞, 李义连, 等, 2008. 微量As(Ⅲ)在粘土矿物上的吸附模拟实验研究. 农业环境科学学报, 27(6): 2246-2250. doi: 10.3321/j.issn:1672-2043.2008.06.021
      [35] 朱义年, 张学洪, 解庆林, 等, 2003. 砷酸盐的溶解度及其稳定性随pH值的变化. 环境化学, 22(5): 478-484. doi: 10.3321/j.issn:0254-6108.2003.05.013
    • 加载中
    图(4) / 表(2)
    计量
    • 文章访问数:  3103
    • HTML全文浏览量:  102
    • PDF下载量:  58
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-08-12
    • 刊出日期:  2012-03-15

    目录

      /

      返回文章
      返回