Experiments of Factors Influencing Adsorption of As (V) in Water by Granite Red Soil
-
摘要: 为探讨花岗岩母质红壤吸附水中砷(Ⅴ)的效果和机理, 采用静态吸附实验, 研究溶液砷初始浓度、反应时间、温度、pH值等因素对红壤吸附水中砷的影响.当溶液砷初始浓度小于5.0 mg/L时, 红壤对砷的去除率均大于97%;随着砷初始浓度增大, 去除率逐渐降低; 反应初期(0~120 min), 红壤对砷的去除率迅速增大至95.0%左右.此后, 去除率缓慢增大, 直到720 min后, 去除率达到97.0%左右, 并趋于稳定; 在砷初始浓度一定时, 红壤对砷的吸附量随着温度的升高逐渐增加, 但增加幅度较小; 红壤对砷的去除率随着体系pH值的增大呈减小趋势; 正交试验表明, 在砷初始浓度为5.0 mg·L-1、反应时间为120 min、pH为5.0及反应温度为40℃的组合下, 红壤对砷的去除率最大.Abstract: In order to study the effects and mechanism of adsorption of As (V) in water by granite-derived red soil, the batch experiments were conducted and the influence on the adsorption of As (V) by granite-derived red soil of the initial As concentration, the reaction time, the reaction temperature and the pH value were studied respectively. When the initial As concentration was below 5.0 mg/L, the removal rate of As was higher than 97%. With the increase of the initial As concentration, the removal rate decreased gradually. In the initial stage of the reaction(0-120 min), the removal rate increased rapidly to about 95%, and then it increased slowly to about 97% at 720 min. The system temperature had a small effect on the adsorption. And with the rising temperature, the removal rate only increased a little. The removal rate decreased gradually while the pH value increased. The orthogonal test indicates that the removal rate was highest when the initial As concentration, the reaction time, the pH value and the reaction temperature were respectively 5.0 mg/L, 120 min, 5.0 and 40℃.
-
Key words:
- granite red soil /
- adsorption /
- initial concentration /
- groundwater /
- pollution control /
- environment engineering
-
表 1 红壤矿物组成及理化性质
Table 1. Minerals and physicochemical property of the red soil
项目 有机质(g/kg) 石英(g/kg) 蒙脱石(g/kg) 伊利石(g/kg) 高岭石(g/kg) 赤铁矿(g/kg) 褐铁矿(g/kg) PZC pH 检测值 16.30 476.00 102.50 121.60 144.70 - 108.60 8.9 5.94 表 2 4因素正交实验结果
Table 2. The orthogonal test of four affecting factors
实验编号 A(mg·L-1) B(min) C D(℃) 去除率(%) 1 1(5) 1(30) 4(8) 3(30) 92.49 2 1 2(60) 1(5) 1(10) 92.57 3 1 3(120) 3(7) 4(40) 90.45 4 1 4(180) 2(6) 2(20) 95.42 5 2(10) 1 3 2 89.72 6 2 2 2 4 96.81 7 2 3 4 1 83.79 8 2 4 1 3 97.61 9 3(15) 1 1 4 95.34 10 3 2 4 2 87.53 11 3 3 2 3 90.34 12 3 4 3 1 83.16 13 4(20) 1 2 1 89.34 14 4 2 3 3 85.96 15 4 3 1 4 94.82 16 4 4 4 2 82.34 $\overline {{\mathit{K}_1}} $ 92.31 80.37 92.42 83.16 - $\overline {{\mathit{K}_2}} $ 90.36 90.62 91.39 88.42 - $\overline {{\mathit{K}_3}} $ 86.71 91.89 87.36 90.49 - $\overline {{\mathit{K}_4}} $ 82.34 90.72 82.35 91.36 - 极差(R) 3.07 4.56 7.64 1.69 - 优水平 A1 B3 C1 D4 - 注:A.初始浓度;B.反应时间;C.pH值;D.温度. -
[1] Aishanjiang, T.S.T., Abulai, W.S.Y., 2010. Test and analysis of fluoride and arsenic in drinking water in countryside, Aktu county, Xinjiang. Endemic Diseases Bulletin, 25(4): 60 (in Chinese). [2] Altundogan, H.S., Altundogan, S., Tumen, F., et al., 2000. Arsenic removal from aqueous solutions by adsorption on red mud. Waste Management, 20(8): 761-767. doi: 10.1016/S0956-053X(00)00031-3 [3] Bai, D.K., Zhu, X.P., Wang, Y.Y., et al., 2010. Study on Adsorption behaviors o f As (Ⅲ) by manganese oxide, iron oxide and aluminium oxide. Rock and Mineral Analysis, 29(1): 55-60 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS201001019.htm [4] Chen, Y.N., Chen, L.Y., 2008. Migration and transformation of arsenic in groundwater. Nonferrous Metals, 60(1): 109-112 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YOUS200801029.htm [5] Garau, G., Silvetti, M., Deiana, S., et al., 2011. Long-term influence of red mud on As mobility and soil physico-chemical and microbial parameters in a polluted sub-acidic soil. Journal of Hazardous Materials, 185(2-3): 1241-1248. doi: 10.1016/j.jhazmat.2010.10.037 [6] Ha, T., Wang, J.W., 2009. Study on As prevention and water improvement in Wuyuan, Hetao plain. Inner Mongolia Water Resources, 2: 92-93 (in Chinese). [7] Han, C.Y., Zhang, L.Y., Zou, Z.H., et al., 2011. Research progress of arsenic-contaminated wastewater treatment by adsorption method. Environmental Chemistry, 30(2): 517-523 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJHX201102022.htm [8] Huang, Y.Y., Liu, D.D., Qu, W.J., et al, 2010. Comparison of efficiency of sorption materials for As (Ⅲ) removal from water. Environmetal Science and Technology, 33(6E): 89-110 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FJKS2010S1027.htm [9] Lakshmipathiraj, P., Narasimhah, B.R.V., Prabhakar, S., et al., 2006. Adsorption of arsenate on synthetic goethite from aqueous solutions. Journal Hazardous Materials, 136(2): 281-287. doi: 10.1016/j.jhazmat.2005.12.015 [10] Li, J., Li, J.C., Li, W., et al., 2010. Adsorption of As (Ⅲ) from water by ferric hydroxide. Water Technology, 4(5): 17-20(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSJU201005005.htm [11] Li, Y., Wang, Q., Jiang, C.X., et al., 2009. The genesis & harm of As-high water in mengding basin of Gengma, Yunnan. Yunnan Geology, 28(4): 367-373 (in Chinese with English abstract). [12] Li, Y.R., Wang, J., Luan, Z.K., et al., 2010. Arsenic removal from aqueous solution using ferrous based red mud sludge. Journal of Hazardous Materials, 177(1-3): 131-137. doi: 10.1016/j.jhazmat.2009.12.006 [13] Liang, J., Xu, R.K., Zhao, A.H., et al., 2007. Effects of temperature and arsenate on adsorption kinetics of cadmium by an oxisol. Ecology and Environment, 16(5): 1433-1435 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRYJ200705020.htm [14] Liu, H.L., Liang, M.N., Zhu, Y.N., et al., 2009. The adsorption of arsenic by ferric hydroxide and its precipitation mechanism. Acta Scientiae Circumstantiae, 29(5): 1011-1020 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJXX200905021.htm [15] Shang, P., Sun, E.C., Li, H.M., et al., 2008. Advances in the treatment of arsenic pollution by environmental mineral materials. Acta Petrologica et Mineralogica, 27(3): 232-240 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200803009.htm [16] Vithanage, M., Senevirathna, W., Chandrajith, R., et al., 2007. Arsenic binding mechanisms on natural red earth: a potential substrate for pollution control. Science of the Total Environment, 379(2-3): 244-248. doi: 10.1016/j.scitotenv.2006.03.045 [17] Wang, N., Liang, C.H., Du, L.Y., et al., 2009. Adsorption of arsenate aqueous solutions by polymeric Al/Fe modified montmorillonite. Industrial Water Treatment, 29(7): 31-35 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_industrial-water-treatment_thesis/0201217227457.html [18] Wang, X.P., ed., 2009. District 5: South area of red soil. China Water Resources, 7: 35-39 (in Chinese). [19] Zhai, H., Sun, H.X., Li, Y.L., et al., 2008. The study for sorption of trace arsenite on clay minerals. Journal of Agro-Environment Science, 27(6): 2246-2250 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NHBH200806024.htm [20] Zhu, Y.N., Zhang, X.H., Xie, Q.L., et al., 2003. Dependence of arsenate solubility and stability on pH value. Environmental Chemistry, 22(5): 478-484 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJHX200305013.htm [21] 艾山江·托石提, 阿布来·吾斯因, 2010. 新疆阿克陶县农村生活饮用水氟、水砷检测与分析. 地方病通报, 25(4): 60. https://www.cnki.com.cn/Article/CJFDTOTAL-DFBT201004033.htm [22] 白德奎, 朱霞萍, 王艳艳, 等, 2010. 氧化锰、氧化铁、氧化铝对砷(Ⅲ)的吸附行为研究. 岩矿测试, 29(1): 55-60. doi: 10.3969/j.issn.0254-5357.2010.01.013 [23] 哈图, 王金伟, 2009. 河套平原腹地五原地方病区防砷改水方案初探. 内蒙古水利, 2: 92-93. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSL200902052.htm [24] 陈云嫩, 柴立元, 2008. 砷在地下水环境中的迁移转化. 有色金属, 60(1): 109-112. doi: 10.3969/j.issn.2095-1744.2008.01.028 [25] 韩彩芸, 张六一, 邹照华, 等, 2011. 吸附法处理含砷废水的研究进展. 环境化学, 30(2): 517-523. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201102022.htm [26] 黄园英, 刘丹丹, 屈文俊, 等, 2010. 几种吸附材料对水中砷(Ⅲ)去除效果比较. 环境科学与技术, 33(6E): 89-110. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2010S1027.htm [27] 梁晶, 徐仁扣, 赵安珍, 等, 2007. 温度和砷酸根对砖红壤中Cd(Ⅱ)吸附动力学的影响. 生态环境, 16(5): 1433-1435. doi: 10.3969/j.issn.1674-5906.2007.05.021 [28] 李杰, 李金成, 李伟, 等, 2010. 氢氧化铁对水中砷的吸附试验研究. 供水技术, 4(5): 17-20. doi: 10.3969/j.issn.1673-9353.2010.05.005 [29] 刘辉利, 梁美娜, 朱义年, 等, 2009. 氢氧化铁对砷的吸附与沉淀机理. 环境科学学报, 29(5): 1011-1020. doi: 10.3321/j.issn:0253-2468.2009.05.019 [30] 李燕, 王强, 蒋成兴, 等, 2009. 云南耿马孟定盆地高砷水成因及其危害. 云南地质, 28(4): 367-373. doi: 10.3969/j.issn.1004-1885.2009.04.002 [31] 商平, 孙恩呈, 李海明, 等, 2008. 环境矿物材料处理砷(As)污染水的研究进展. 岩石矿物学杂志, 27(3): 232-240. doi: 10.3969/j.issn.1000-6524.2008.03.009 [32] 王楠, 梁成华, 杜立宇, 等, 2009. 柱撑蒙脱石对水中砷(Ⅴ)的吸附研究. 工业水处理, 29(7): 31-35. doi: 10.3969/j.issn.1005-829X.2009.07.009 [33] 王晓平责编, 2009. 分区五: 南方红壤区. 中国水利, 7: 35-39. [34] 翟辉, 孙红霞, 李义连, 等, 2008. 微量As(Ⅲ)在粘土矿物上的吸附模拟实验研究. 农业环境科学学报, 27(6): 2246-2250. doi: 10.3321/j.issn:1672-2043.2008.06.021 [35] 朱义年, 张学洪, 解庆林, 等, 2003. 砷酸盐的溶解度及其稳定性随pH值的变化. 环境化学, 22(5): 478-484. doi: 10.3321/j.issn:0254-6108.2003.05.013