Influencing Factors of Treatment of Wastewater Containing Benzotriazole with an Electro-Coagulation Method and the Optimization of Experimental Conditions
-
摘要: 应用电凝聚法处理含苯并三唑废水显示出良好的实用前景, 对其影响因素进行探讨可以为制定实际废水处理方案提供依据.采用室内实验方式, 利用人工配制的模拟废水, 通过改变某个影响因素的实验条件获取系列实验数据.结果发现, 电流密度、极板间距、电解时间、原水的酸碱度(pH值)、原水初始COD、极板数与池容比、絮凝反应时间以及废水组分等均对处理效果产生影响.在实验结果基础上优化了各影响因素的实验条件, 并通过实际废水实验验证了优化条件的可行性和电凝聚法处理含苯并三唑废水的实用性.Abstract: Treatment of wastewater containing Benzontriazole with an electro-coagulation method has good prospects of application. Furthermore, a discussion on the influencing factors of treatment can provide a basis for establishing practical wastewater treatment projects. A series of data are gained by changing the experimental conditions of influencing factors in the artificial compounded simulated wastewater based on the laboratory experiments. The results showed that the current density, the interval between polar plates, the electrolyzation time, the pH value of raw water, the initial COD concentration of the raw water, the numbers of polar plates, the tank volume rate, the flocculation reaction time and the composition of wastewater, all above influence the treating effects. Based on the results, the experimental conditions of all influencing factors were optimized. Besides, the feasibility of optimization of experimental conditions and the practicability of treating wastewater containing benzotriazole with electro-coagulation method were validated by an actual wastewater treating experiment.
-
表 1 电流密度对COD去除效果影响实验结果
Table 1. Results of the effects of dislodging COD by current density
I(A) J(A/dm2) U(V) 出水特性 去除率(%) 絮凝现象描述 pH 电导率(mS/cm) COD(mg/L) 0.5 0.88 3.2 7.27 10.22 3 410 44.4 絮凝体砖红色,上浮 1.0 1.75 5.3 7.65 10.44 1 340 78.1 絮凝体砖红色,上浮 1.5 2.63 7.6 8.45 10.56 410 93.3 絮凝体黄略显红色,轻微上浮 2.0 3.51 9.5 8.89 10.76 260 95.8 絮凝体黄略显绿色,轻微上浮 2.5 4.39 11.0 9.27 10.54 240 96.1 絮凝体黄绿色,轻微上浮 3.0 5.26 13.9 9.41 10.57 230 96.3 絮凝体黄绿色 表 2 极板间距对COD去除效果影响实验结果
Table 2. Effects of dislodging COD by intervals of polar platers
极板间距(cm) 电流强度(A) 电流密度(A/dm2) 消耗功率(W) 出水特性 去除率(%) 絮凝现象描述 pH 电导率(mS/cm) COD(mg/L) 5 0.9 1.58 9 7.23 11.05 3 070 49.9 随着极板间距缩小,絮凝体从黄褐色变为黄绿色,上浮程度降低 4 1.1 1.93 11 7.38 11.06 2 900 52.7 3 1.4 2.46 14 7.61 11.22 1 580 74.2 2 2.1 3.68 21 8.53 11.29 370 94.0 1 3.7 6.49 37 9.55 11.59 140 97.7 表 3 电极数与池容比对COD去除效果影响实验结果
Table 3. Effects of dislodging COD by numbers of polar platers and tank volume rate
池容积(mL) 极板间距(cm) 电源电压(V) 出水特性 去除率(%) 絮凝现象描述 pH 电导率(mS/cm) COD(mg/L) 90 1 4.8 9.94 9.23 660 89.2 随着处理水量增大,絮凝体从墨绿色逐渐变为砖红色,静置后上浮 150 1 5.2 9.61 9.57 140 97.7 270 2 9.6 8.89 9.65 260 95.8 390 2 9.8 8.53 9.72 370 94.0 510 2 9.7 7.75 9.77 1 480 75.9 630 2 9.6 7.44 9.82 2 110 65.6 750 2 9.8 7.47 9.92 2 360 61.5 表 4 电解时间对COD去除效果影响实验结果
Table 4. Effects of dislodging COD by electrolyzation time
I=2.0 A,J=3.51 A/dm2 I=3.8 A,J=6.67 A/dm2 絮凝现象描述 电解时间(min) 出水COD(mg/L) 去除率(%) 电解时间(min) 出水COD(mg/L) 去除率(%) 5 3 580 41.6 5 1 670 72.8 随着通电时间加长,絮凝体从砖红色过渡到墨绿色,上浮程度降低 10 1 480 75.9 10 120 98.0 15 420 93.2 15 50 99.2 20 280 95.4 20 50 99.2 25 230 96.3 25 170 97.2 30 260 95.8 表 5 絮凝反应时间对COD去除效果影响实验结果
Table 5. Effects of dislodging COD by flocculation reaction time
絮凝反应时间(min) 出水COD(mg/L) 去除率(%) 絮凝现象描述 0 360 94.1 随着絮凝沉淀时间加长,絮凝体上浮并且结合的紧密程度加强,下部清液无色透明 20 210 96.6 40 230 96.3 60 220 96.4 80 180 97.1 表 6 初始pH值对COD去除效果影响实验结果
Table 6. Effects of dislodging COD by initial pH value
模拟废水pH 出水pH 出水电导率(mS/cm) 电源电压(V) 出水COD(mg/L) 去除率(%) 絮凝现象描述 3.03 5.72 9.65 9.1 400 93.5 随着原水pH增大,絮凝体从砖红色过渡到墨绿色.pH值为6.96的样品(未经调节原水)滤清液无色,以其为中心越偏酸或碱滤清液黄色越明显 4.01 6.35 9.70 9.2 200 96.7 5.00 7.04 9.75 9.4 300 95.1 6.06 8.05 9.76 9.4 290 95.3 6.96 8.82 9.68 9.4 280 95.4 8.00 9.53 10.33 9.0 1670 72.8 9.01 10.51 11.50 8.4 3470 43.4 表 7 初始COD对去除效果影响实验结果
Table 7. Effects of dislodging by initial COD
苯并三唑浓度(‰) 模拟废水COD(mg/L) 模拟废水pH 出水pH 出水COD(mg/L) 去除量(mg/L) 去除率(%) 絮凝现象描述 1 1 500 7.28 9.75 140 1 360 90.7 絮凝体从墨绿色经黄绿色变为砖红色 2 3 000 7.08 9.79 110 2 890 96.3 3 4 500 7.00 9.85 130 4 370 97.1 4 6 000 6.96 9.48 240 5 760 96.0 5 7 500 6.93 9.10 570 6 930 92.4 6 9 000 6.85 8.60 750 8 250 91.7 表 8 Na2SO4和NaNO2浓度对COD去除效果影响实验结果
Table 8. Effects of dislodging COD by Na2SO4 and NaNO2 contents
Na2SO4浓度(%) 原水电导率(mS/cm) 出水电导率(mS/cm) 电流强度(A) 出水pH 出水COD(mg/L) 去除率(%) 絮凝现象描述 0.4 4.79 4.90 0.9 7.60 1600 73.2 絮凝体从砖红色经黄绿色变为墨绿色 0.75 7.26 7.48 1.3 7.85 870 85.4 1.1 10.05 10.15 2.1 9.09 40 99.3 1.45 14.93 14.92 3.1 9.50 90 98.5 2.15 16.56 16.77 4.0 9.47 70 98.8 2.85 22.78 23.30 5.0 9.64 140 97.7 3.55 >25 >25 5.6 9.58 110 98.2 NaNO2浓度(%) 模拟废水电导率(mS/cm) 出水电导率(mS/cm) 电流强度(A) 模拟废水pH 出水pH 出水COD(mg/L) 絮凝现象描述 0 0.58 0.64 0.1 6.96 7.30 5 250 絮凝体为土褐色,产量逐渐减少直至基本没有,清液开始浑浊,后来变为黄棕色,而且随着亚硝酸钠浓度加大而加深 1.08 6.22 6.08 1.1 6.97 7.87 6 500 2.16 11.96 11.78 2.1 6.96 8.25 7 450 3.24 17.22 17.07 3.1 6.93 8.57 8 030 表 9 实际含苯并三唑废水电凝聚处理实验结果
Table 9. Results of treatment of actual wastewater containing benzotriazole by electro-coagulation method
样号 出水COD(mg/L) 去除率(%) 絮凝现象描述 1 5 190 26.5 与模拟原水相比,絮凝体生成速度慢,产量少,呈土褐色,气体生成量大 2 5 230 25.9 3 5 300 24.9 表 10 实际含苯并三唑废水投放NaCl后电凝聚处理实验结果
Table 10. Results of treatment of actual wastewater containing benzotriazole dissolving NaCl by electro-coagulation method
样号 出水COD(mg/L) 去除率(%) 絮凝现象描述 1 2 040 71.1 与第一次电凝聚相比,絮凝体生成速度略快,絮凝体产量略有增多,呈土褐色,气泡生成量变化不大 2 2 160 69.4 3 2 370 66.4 注:结果是经过两次电凝聚法处理的;投放NaCl的浓度为0.5%. -
[1] Chen, X.M., Chen, G.H., Yue, P.L., 2000. Separation of pollutants from restaurant wastewater by electrocoagulation. Separation and Purification Technology, 19(1-2): 65-76. doi: 10.1016/S1338-5866(99)00072-6 [2] Chen, Y.X., Lu, S.C., 1995. Experiment study on electrochemical method treatment of high salt wastewater. Journal of Wuhan Iron and Steel University, 18(1): 7-13 (in Chinese with English abstract). [3] Gürses, A., Yalcin, M., Dogar, C., 2002. Electrocoagulation of some reactive dyes: a statistical investigation of some electrochemical variables. Waste Management, 22(5): 491-499. doi: 10.1016/S0956-053X(02)0015-6 [4] Holt, P.K., Barton, G.W., Wark, M., et al., 2002. A quantitative comparison between chemical dosing and electrocoagulation. Colloids and Surfaces A: Physicochem. Eng. Aspects, 211(2-3): 233-248. doi: 10.1016/S0927-7757(02)00285-6 [5] Liang, J.Y., Yang, Y.Z., Hu, X.M., 2008. Kinetics analysis of reactive black KN-B wastewater treatment by electrocoagulation with a sacrificial iron anode. Environmental Science & Technology, 31(1): 90-93 (in Chinese with English abstract). [6] Lin, S.H., Chen, M.L., 1997. Treatment of textile wastewater by chemical methods for reuse. Water Research, 31 (4): 868-876. doi: 10.1016/S0043-1354(96)00318-1 [7] Ma, S.M., Wang, S.W., Zhong, Z, S., et al., 2005. Research on the method for the treatment of wastewater containing benzotriazole. Earth Science Frontiers, 12(Suppl. ): 61-66 (in Chinese with English abstract). [8] Pouet, M.F., Grasmick, A., 1995. Urban wastewater treatment by electrocoagulation and flotation. Wat. Sci. Tech., 31(3-4): 275-283. doi: 10.1016/0273-1223(95)00230-K [9] Xu, M., Ge, J.T., 2009. Treatment of laundry wastewater by bipolar electrocoagulation-electroflotation process. Guangdong Chemical Industry, 36(1): 68-70 (in Chinese with English abstract). [10] Zhang, Z.L., Wang, H.L., Yang, L., 2008. Advances on electrocoagulation in wastewater treatment. Pollution Control Technology, 21(1): 55-58 (in Chinese with English abstract). [11] Zou, B., Zeng, F.D., Deng, H., 2000. Electrocoagulation-flotation treatment of drilling wastewater. Chemical Industry of Hubei Province, (5): 14-15 (in Chinese with English abstract). [12] 陈运轩, 卢寿慈, 1995. 高盐废水电化学处理实验研究. 武汉钢铁学院学报, 18(1): 7-13. [13] 梁吉艳, 杨蕴哲, 胡筱敏, 2008. 铁阳极电凝聚处理活性黑KN-B染料废水动力学分析. 环境科学与技术, 31(1): 90-93. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200801023.htm [14] 马生明, 王守伟, 钟佐燊, 等, 2005. 含苯并三唑废水处理方法探讨. 地学前缘, 12(增刊): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2005S1009.htm [15] 徐敏, 葛建团, 2009. 复极式电凝聚-电气浮方法处理洗衣废水. 广东化工, 36(1): 68-70. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG200901030.htm [16] 张振林, 王海林, 杨绿, 2008. 电凝聚在废水处理中的研究进展. 污染防治技术, 21(1): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-GLYF200502005.htm [17] 邹斌, 曾繁涤, 邓皓, 2000. 电气浮法处理钻井废水. 湖北化工, (5): 14-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HBHG200005007.htm