Sorption of Trichloroethylene by the Simulated Organo-Mineral Complexes
-
摘要: 为了研究土壤中有机质-矿质复合体结合形式对有机污染物吸附的影响, 利用批实验的方法, 对比研究有机质-矿质复合体与无机矿物和腐殖酸简单的混合物对三氯乙烯的吸附.结果表明, 与腐殖酸相比, 高岭石和石英砂吸附三氯乙烯量很小.模拟有机质-矿质复合体吸附三氯乙烯是线性吸附, Koc值随腐殖酸含量的增加而减小, 并且比纯腐殖酸样品的Koc值小.有机质与矿质的相互作用影响了有机质的吸附性能.对有机质在复合体中的形态变化进行了分析, 提出了有机质-矿质复合体模型, 并对实验结果进行了合理的解释.Abstract: Adsorption behavior of trichloroethylene on the simulated orano-mineral complex and the mixture of mineral and humic acid were comparatively studied with batch technique. The results show that sorption capacity of trichloroethylene by kaolinite and quartz sand is quite small compared to that of the humic acid. Trichloroethylene sorption to the simulated organo-minerals exhibits linear isotherm and Koc decreases with the increase of the humic acid loading, being less than that of the pure humic acid. The interaction of humic acid and simulated minerals affects the sorption of trichloroethylene. Based on the analysis of conformation of the humic acid in the complexes, a model of organo-mineral is generalized to explain the results well.
-
Key words:
- organic matter /
- mineral matter /
- trichloroethylene /
- organo-mineral complexes /
- groundwater /
- pollution control
-
表 1 模拟矿物和模拟土样参数
Table 1. The parameters of model minerals and simulated soils
编号 foc(%) 高岭石∶石英砂 KW1 0.00 3∶7 KW2 0.00 纯高岭石 S1 0.16 3∶7 S2 0.29 3∶7 S3 0.58 3∶7 S4 0.82 3∶7 S5 1.19 3∶7 S6 1.55 3∶7 S7 2.29 3∶7 表 2 模拟矿物质对TCE的等温吸附方程
Table 2. TCE sorption isotherm equations of simulated minerals
样品 Langmuir方程 R2 K(kg·L-1) Sm(μg·kg-1) KW1 y=4.083x+0.017 0.992 0.004 60.606 KW2 y=0.751x+0.005 0.998 0.007 192.308 表 3 模拟土壤样品对TCE的等温吸附方程
Table 3. TCE adsorption isotherm equations of simulated soils
编号 foc(%) Freundlich吸附方程 n R2 Kd(L·kg-1) Koc(L·kg-1) S1 0.16 y=0.797x+0.245 0.797 0.996 0.57 355.21 S2 0.29 y=0.805x+0.612 0.805 0.997 1.42 490.86 S3 0.58 y=0.834x+0.730 0.834 0.994 2.23 384.5 S4 0.82 y=0.899x+0.734 0.899 0.989 3.22 392.2 S5 1.19 y=0.864x+0.984 0.864 0.989 4.90 411.38 S6 1.55 y=0.899x+1.060 0.899 0.996 7.06 455.77 S7 2.29 y=1.031x+0.938 1.031 0.992 10.07 439.87 表 4 模拟有机质—矿质复合体和腐殖酸的TCE等温吸附方程
Table 4. TCE sorption isotherm equations of simulated SOM-minerals and huimic acid
吸附剂 线性等温吸附方程 R2 Kd(L·kg-1) Koc(L·kg-1) foc(%) 腐殖酸 y=939x-21279 0.986 939 939 100 2%腐殖酸-高岭石 y=3.90x+43.85 0.981 3.90 629.0 0.62 4%腐殖酸-高岭石 y=7.29x-4.83 0.988 7.29 552.0 1.32 8%腐殖酸-高岭石 y=13.84x+131.12 0.960 13.84 425.8 3.25 -
[1] Aggarwal, V., Li, H., Boyd, S.A., et al., 2006. Enhanced sorption of trichloroethene by smectite clay exchanged with Cs+. Environmental Science & Technology, 40(3): 894-899. doi: 10.1021/es0500411 [2] Akyol, N.H., Yolcubal, I., Yüksel, D.I., 2011. Sorption and transport of trichloroethylene in caliche soil. Chemosphere, 82(6): 809-816. doi: 10.1016/j.chemosphere.2011.11.029 [3] Cheng, H., Reinhard, M., 2006. Sorption of trichloroethylene in hydrophobic micropores of dealuminated Y zeolites and natural minerals. Environmental Science & Technology, 40(24): 7694-7701. doi: 10.1021/es060886s [4] Chenu, C., Plante, A.F., 2006. Clay-sized organo-mineral complexes in a cultivation chronosequence: revisiting the concept of the primary organo-mineral complex. European Journal of Soil Science, 57(4): 596-607. doi: 10.1111/j.1365-2389.2006.00834.x [5] Chorover, J., Amistadi, M.K., 2001. Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces. Geochimica et Cosmochimica Acta, 65(1): 95-109. doi: 10.1016/S0016-7037(00)00511-1 [6] Feng, X.J., Simpson, A.J., Simpson, M.J., 2005. Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces. Organic Geochemistry, 36(11): 1553-1566. doi: 10.1016/j.orggeochem.2005.06.008 [7] Grathwohl, P., 1990. Influence of organic-matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic-hydrocarbons-implications on Koc correlations. Environmental Science & Technology, 24(11): 1687-1693. doi: 10.1021/es00081a010 [8] Kahle, M., Kleber, M., Jahn, R., 2002. Carbon storage in loess derived surface soils from Central Germany: influence of mineral phase variables. Journal of Plant Nutrition and Soil Science, 165(2): 141-149. doi:10.1002/1522-2624(200204)165:2<141::AID-JPLN141>3.0.CO;2-X [9] Kaiser, K., Guggenberger, G., 2003. Mineral surfaces and soil organic matter. European Journal of Soil Science, 54(2): 219-236. doi: 10.1046/j.1365-2389.2003.00544.x [10] Kleber, M., Sollins, P., Sutton, R., 2007. A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry, 85(1): 9-24. doi: 10.1007/s10533-007-9103-5 [11] Lahlou, M., Harms, H., Springael, D., et al., 2000. Influence of soil components on the transport of polycyclic aromatic hydrocarbon-degrading bacteria through saturated porous media. Environmental Science & Technology, 34(17): 3649-3656. doi: 10.1021/es000021t [12] Lin, C.J., Lo, S.L., 2005. Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system. Water Research, 39(6): 1037-1046. doi: 10.1016/j.water.2005.06.035 [13] Liu, M.Z., Chen, H.H., Hu, L.Q., et al., 2006. Modeling of transformation and transportation of PCE and TCE by biodegradation in shallow groundwater. Earth Science Frontiers, 13(1): 155-159 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200601022.htm [14] McCarthy, J.F., Ilavsky, J., Jastrow, J.D., et al., 2008. Protection of organic carbon in soil microaggregates via restructuring of aggregate porosity and filling of pores with accumulating organic matter. Geochimica et Cosmochimica Acta, 72(19): 4725-4744. doi: 10.1016/j.gca.2008.06.015 [15] Ruffino, B., Zanetti, M., 2009. Adsorption study of several hydrophobic organic contaminants on an aquifer material. American Journal of Environmental Sciences, 5(4): 508-516. doi: 10.3844/ajessp.2009.508.516 [16] Tombacz, E., Libor, Z., Illes, E., et al., 2004. The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Organic Geochemistry, 35(3): 257-267. doi: 10.1016/j.orggeochem.2003.11.002 [17] Wang, K.J., Xing, B.S., 2005. Structural and sorption characteristics of adsorbed humic acid on clay minerals. Journal of Environmental Quality, 34(1): 342-349. doi: 10.2134/jeq2005.0342 [18] Wu, W.L., Sun, H.W., 2006. Sorption characteristics of trichloroethylene on model sorbents. Ecology and Environment, 15(2): 207-211 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRYJ200602001.htm [19] Zhang, D.Z., Chen, H.H., Li, H.M., et al., 2002. Halogenated hydrocarbon comtaminants in shallow groundwater. Geology in China, 29(3): 326-329 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200203016.htm [20] Zhang, K.F., He, J.T., Liu, M.L., et al., 2009. The effects of different contents of organic carbon on the adsorption of trichlorinated hydrocarbon in soil. Acta Petrologica et Mineralogica, 28(6): 649-652 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200906025.htm [21] Zhao, H., Vance, G.F., 1998. Sorption of trichloroethylene by organo-clays in the presence of humic substances. Water Research, 32(12): 3710-3716. doi: 10.1016/s0043-1354(98)00172-9 [22] 刘明柱, 陈鸿汉, 胡丽琴, 等, 2006. 生物降解作用下地下水中TCE、PCE迁移转化的数值模拟研究. 地学前缘, 13(1): 155-159. doi: 10.3321/j.issn:1005-2321.2006.01.021 [23] 吴文伶, 孙红文, 2006. 三氯乙烯在模型吸附剂上的吸附特性. 生态环境, 15(2): 207-211. doi: 10.3969/j.issn.1674-5906.2006.02.001 [24] 张达政, 陈鸿汉, 李海明, 等, 2002. 浅层地下水卤代烃污染初步研究. 中国地质, 29(3): 326-329. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200203016.htm [25] 张坤峰, 何江涛, 刘明亮, 等, 2009. 土壤中有机碳含量对三氯乙烯的吸附影响实验. 岩石矿物学杂志, 28(6): 649-652. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200906025.htm