• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    模拟有机质—矿质复合体对三氯乙烯的吸附

    李巨峰 陈鸿汉 何江涛 张坤峰

    李巨峰, 陈鸿汉, 何江涛, 张坤峰, 2012. 模拟有机质—矿质复合体对三氯乙烯的吸附. 地球科学, 37(2): 327-331. doi: 10.3799/dqkx.2012.037
    引用本文: 李巨峰, 陈鸿汉, 何江涛, 张坤峰, 2012. 模拟有机质—矿质复合体对三氯乙烯的吸附. 地球科学, 37(2): 327-331. doi: 10.3799/dqkx.2012.037
    LI Ju-feng, CHEN Hong-han, HE Jiang-tao, ZHANG Kun-feng, 2012. Sorption of Trichloroethylene by the Simulated Organo-Mineral Complexes. Earth Science, 37(2): 327-331. doi: 10.3799/dqkx.2012.037
    Citation: LI Ju-feng, CHEN Hong-han, HE Jiang-tao, ZHANG Kun-feng, 2012. Sorption of Trichloroethylene by the Simulated Organo-Mineral Complexes. Earth Science, 37(2): 327-331. doi: 10.3799/dqkx.2012.037

    模拟有机质—矿质复合体对三氯乙烯的吸附

    doi: 10.3799/dqkx.2012.037
    基金项目: 

    国家自然科学基金项目 40702060

    详细信息
      作者简介:

      李巨峰(1971-), 男, 博士, 主要从事环境监测技术和地下水修复技术的研究.E-mail: lijufeng@cnpc.com.cn

    • 中图分类号: X52

    Sorption of Trichloroethylene by the Simulated Organo-Mineral Complexes

    • 摘要: 为了研究土壤中有机质-矿质复合体结合形式对有机污染物吸附的影响, 利用批实验的方法, 对比研究有机质-矿质复合体与无机矿物和腐殖酸简单的混合物对三氯乙烯的吸附.结果表明, 与腐殖酸相比, 高岭石和石英砂吸附三氯乙烯量很小.模拟有机质-矿质复合体吸附三氯乙烯是线性吸附, Koc值随腐殖酸含量的增加而减小, 并且比纯腐殖酸样品的Koc值小.有机质与矿质的相互作用影响了有机质的吸附性能.对有机质在复合体中的形态变化进行了分析, 提出了有机质-矿质复合体模型, 并对实验结果进行了合理的解释.

       

    • 图  1  模拟土壤KdKocfoc变化关系曲线

      Fig.  1.  Effect of foc on Kd and on Koc for TCE sorption on the simulated soils

      图  2  模拟有机质—矿质复合体KdKocfoc变化关系曲线

      Fig.  2.  Effect of foc on Kd and on Koc for TCE sorption on the simulated SOM-mineral complexes

      图  3  有机质—矿质复合体形成示意

      Fig.  3.  Schematic diagram of formation of organo-mineral complexes

      表  1  模拟矿物和模拟土样参数

      Table  1.   The parameters of model minerals and simulated soils

      编号 foc(%) 高岭石∶石英砂
      KW1 0.00 3∶7
      KW2 0.00 纯高岭石
      S1 0.16 3∶7
      S2 0.29 3∶7
      S3 0.58 3∶7
      S4 0.82 3∶7
      S5 1.19 3∶7
      S6 1.55 3∶7
      S7 2.29 3∶7
      下载: 导出CSV

      表  2  模拟矿物质对TCE的等温吸附方程

      Table  2.   TCE sorption isotherm equations of simulated minerals

      样品 Langmuir方程 R2 K(kg·L-1) Sm(μg·kg-1)
      KW1 y=4.083x+0.017 0.992 0.004 60.606
      KW2 y=0.751x+0.005 0.998 0.007 192.308
      下载: 导出CSV

      表  3  模拟土壤样品对TCE的等温吸附方程

      Table  3.   TCE adsorption isotherm equations of simulated soils

      编号 foc(%) Freundlich吸附方程 n R2 Kd(L·kg-1) Koc(L·kg-1)
      S1 0.16 y=0.797x+0.245 0.797 0.996 0.57 355.21
      S2 0.29 y=0.805x+0.612 0.805 0.997 1.42 490.86
      S3 0.58 y=0.834x+0.730 0.834 0.994 2.23 384.5
      S4 0.82 y=0.899x+0.734 0.899 0.989 3.22 392.2
      S5 1.19 y=0.864x+0.984 0.864 0.989 4.90 411.38
      S6 1.55 y=0.899x+1.060 0.899 0.996 7.06 455.77
      S7 2.29 y=1.031x+0.938 1.031 0.992 10.07 439.87
      下载: 导出CSV

      表  4  模拟有机质—矿质复合体和腐殖酸的TCE等温吸附方程

      Table  4.   TCE sorption isotherm equations of simulated SOM-minerals and huimic acid

      吸附剂 线性等温吸附方程 R2 Kd(L·kg-1) Koc(L·kg-1) foc(%)
      腐殖酸 y=939x-21279 0.986 939 939 100
      2%腐殖酸-高岭石 y=3.90x+43.85 0.981 3.90 629.0 0.62
      4%腐殖酸-高岭石 y=7.29x-4.83 0.988 7.29 552.0 1.32
      8%腐殖酸-高岭石 y=13.84x+131.12 0.960 13.84 425.8 3.25
      下载: 导出CSV
    • [1] Aggarwal, V., Li, H., Boyd, S.A., et al., 2006. Enhanced sorption of trichloroethene by smectite clay exchanged with Cs+. Environmental Science & Technology, 40(3): 894-899. doi: 10.1021/es0500411
      [2] Akyol, N.H., Yolcubal, I., Yüksel, D.I., 2011. Sorption and transport of trichloroethylene in caliche soil. Chemosphere, 82(6): 809-816. doi: 10.1016/j.chemosphere.2011.11.029
      [3] Cheng, H., Reinhard, M., 2006. Sorption of trichloroethylene in hydrophobic micropores of dealuminated Y zeolites and natural minerals. Environmental Science & Technology, 40(24): 7694-7701. doi: 10.1021/es060886s
      [4] Chenu, C., Plante, A.F., 2006. Clay-sized organo-mineral complexes in a cultivation chronosequence: revisiting the concept of the primary organo-mineral complex. European Journal of Soil Science, 57(4): 596-607. doi: 10.1111/j.1365-2389.2006.00834.x
      [5] Chorover, J., Amistadi, M.K., 2001. Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces. Geochimica et Cosmochimica Acta, 65(1): 95-109. doi: 10.1016/S0016-7037(00)00511-1
      [6] Feng, X.J., Simpson, A.J., Simpson, M.J., 2005. Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces. Organic Geochemistry, 36(11): 1553-1566. doi: 10.1016/j.orggeochem.2005.06.008
      [7] Grathwohl, P., 1990. Influence of organic-matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic-hydrocarbons-implications on Koc correlations. Environmental Science & Technology, 24(11): 1687-1693. doi: 10.1021/es00081a010
      [8] Kahle, M., Kleber, M., Jahn, R., 2002. Carbon storage in loess derived surface soils from Central Germany: influence of mineral phase variables. Journal of Plant Nutrition and Soil Science, 165(2): 141-149. doi:10.1002/1522-2624(200204)165:2<141::AID-JPLN141>3.0.CO;2-X
      [9] Kaiser, K., Guggenberger, G., 2003. Mineral surfaces and soil organic matter. European Journal of Soil Science, 54(2): 219-236. doi: 10.1046/j.1365-2389.2003.00544.x
      [10] Kleber, M., Sollins, P., Sutton, R., 2007. A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry, 85(1): 9-24. doi: 10.1007/s10533-007-9103-5
      [11] Lahlou, M., Harms, H., Springael, D., et al., 2000. Influence of soil components on the transport of polycyclic aromatic hydrocarbon-degrading bacteria through saturated porous media. Environmental Science & Technology, 34(17): 3649-3656. doi: 10.1021/es000021t
      [12] Lin, C.J., Lo, S.L., 2005. Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system. Water Research, 39(6): 1037-1046. doi: 10.1016/j.water.2005.06.035
      [13] Liu, M.Z., Chen, H.H., Hu, L.Q., et al., 2006. Modeling of transformation and transportation of PCE and TCE by biodegradation in shallow groundwater. Earth Science Frontiers, 13(1): 155-159 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200601022.htm
      [14] McCarthy, J.F., Ilavsky, J., Jastrow, J.D., et al., 2008. Protection of organic carbon in soil microaggregates via restructuring of aggregate porosity and filling of pores with accumulating organic matter. Geochimica et Cosmochimica Acta, 72(19): 4725-4744. doi: 10.1016/j.gca.2008.06.015
      [15] Ruffino, B., Zanetti, M., 2009. Adsorption study of several hydrophobic organic contaminants on an aquifer material. American Journal of Environmental Sciences, 5(4): 508-516. doi: 10.3844/ajessp.2009.508.516
      [16] Tombacz, E., Libor, Z., Illes, E., et al., 2004. The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Organic Geochemistry, 35(3): 257-267. doi: 10.1016/j.orggeochem.2003.11.002
      [17] Wang, K.J., Xing, B.S., 2005. Structural and sorption characteristics of adsorbed humic acid on clay minerals. Journal of Environmental Quality, 34(1): 342-349. doi: 10.2134/jeq2005.0342
      [18] Wu, W.L., Sun, H.W., 2006. Sorption characteristics of trichloroethylene on model sorbents. Ecology and Environment, 15(2): 207-211 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRYJ200602001.htm
      [19] Zhang, D.Z., Chen, H.H., Li, H.M., et al., 2002. Halogenated hydrocarbon comtaminants in shallow groundwater. Geology in China, 29(3): 326-329 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200203016.htm
      [20] Zhang, K.F., He, J.T., Liu, M.L., et al., 2009. The effects of different contents of organic carbon on the adsorption of trichlorinated hydrocarbon in soil. Acta Petrologica et Mineralogica, 28(6): 649-652 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200906025.htm
      [21] Zhao, H., Vance, G.F., 1998. Sorption of trichloroethylene by organo-clays in the presence of humic substances. Water Research, 32(12): 3710-3716. doi: 10.1016/s0043-1354(98)00172-9
      [22] 刘明柱, 陈鸿汉, 胡丽琴, 等, 2006. 生物降解作用下地下水中TCE、PCE迁移转化的数值模拟研究. 地学前缘, 13(1): 155-159. doi: 10.3321/j.issn:1005-2321.2006.01.021
      [23] 吴文伶, 孙红文, 2006. 三氯乙烯在模型吸附剂上的吸附特性. 生态环境, 15(2): 207-211. doi: 10.3969/j.issn.1674-5906.2006.02.001
      [24] 张达政, 陈鸿汉, 李海明, 等, 2002. 浅层地下水卤代烃污染初步研究. 中国地质, 29(3): 326-329. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200203016.htm
      [25] 张坤峰, 何江涛, 刘明亮, 等, 2009. 土壤中有机碳含量对三氯乙烯的吸附影响实验. 岩石矿物学杂志, 28(6): 649-652. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200906025.htm
    • 加载中
    图(3) / 表(4)
    计量
    • 文章访问数:  3233
    • HTML全文浏览量:  124
    • PDF下载量:  72
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-08-12
    • 刊出日期:  2012-03-15

    目录

      /

      返回文章
      返回