• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    无机盐与表面活性剂对菲在黄土上吸附/解吸行为的联合影响

    吴耀国 张小燕 胡思海 卢聪

    吴耀国, 张小燕, 胡思海, 卢聪, 2012. 无机盐与表面活性剂对菲在黄土上吸附/解吸行为的联合影响. 地球科学, 37(2): 319-326. doi: 10.3799/dqkx.2012.036
    引用本文: 吴耀国, 张小燕, 胡思海, 卢聪, 2012. 无机盐与表面活性剂对菲在黄土上吸附/解吸行为的联合影响. 地球科学, 37(2): 319-326. doi: 10.3799/dqkx.2012.036
    WU Yao-guo, ZHANG Xiao-yan, HU Si-hai, LU Cong, 2012. Jointed Effects of Inorganic Salts and Sodium Dodecylbenzene Sulfonate (SDBS) on Sorption and Adsorption of Phenanthrene in Loess Soils. Earth Science, 37(2): 319-326. doi: 10.3799/dqkx.2012.036
    Citation: WU Yao-guo, ZHANG Xiao-yan, HU Si-hai, LU Cong, 2012. Jointed Effects of Inorganic Salts and Sodium Dodecylbenzene Sulfonate (SDBS) on Sorption and Adsorption of Phenanthrene in Loess Soils. Earth Science, 37(2): 319-326. doi: 10.3799/dqkx.2012.036

    无机盐与表面活性剂对菲在黄土上吸附/解吸行为的联合影响

    doi: 10.3799/dqkx.2012.036
    基金项目: 

    国家自然科学基金 40872164

    详细信息
      作者简介:

      吴耀国(1967-), 男, 教授, 博士生导师, 主要从事水文地球化学研究.E-mail: wuygal@nwpu.edu.cn

    • 中图分类号: P641.3

    Jointed Effects of Inorganic Salts and Sodium Dodecylbenzene Sulfonate (SDBS) on Sorption and Adsorption of Phenanthrene in Loess Soils

    • 摘要: 以NaCl和MgCl2、十二烷基苯磺酸钠(SDBS)分别作为无机盐、表面活性剂的代表, 研究两者共存对菲在黄土中吸附/解吸行为联合影响的特点及其形成机制.结果表明, NaCl(≥0.1 mol/L)、MgCl2或SDBS的单独介入, 可缩短吸附平衡时间、增加吸附容量等, 即对吸附具促进作用, 随着介入浓度的升高, 促进作用越明显, 促进能力为MgCl2>SDBS>NaCl; 不改变吸附模式, 仍较好地符合F型与H型.NaCl与MgCl2同时介入, 对菲吸附的影响仍表现为促进作用, 呈现相加作用的特点, 且随着MgCl2浓度的升高, 促进作用更明显.NaCl(或及MgCl2)与SDBS的同时介入对吸附的联合影响, 总体上表现为相加作用, 但还呈拮抗作用的特点, 尤其MgCl2浓度较高时.NaCl或(及)MgCl2的存在, 或与SDBS共存时, 与纯水相比, 菲的解吸速度较快、解吸率较高、平衡时间较短, 且无滞后效应.可见, 无机盐与表面活性剂同时适量介入, 以强化菲等污染地下水系统的修复功效具一定的可行性.

       

    • 图  1  菲吸附动力学曲线

      Fig.  1.  Sorption isotherm curves for phenanthrene on loess soil

      图  2  NaCl介入后的吸附动力学曲线

      Fig.  2.  Sorption isotherm curves while NaCl was added

      图  3  外加无机盐NaCl浓度与Kd关系

      Fig.  3.  Relationship between Kd and NaCl concentration

      图  4  MgCl2浓度与Kd之间的关系

      Fig.  4.  Relationship between Kd and MgCl2 concentration

      图  5  加入SDBS后的吸附动力学曲线

      Fig.  5.  Sorption isotherm curves while SDBS was added

      图  6  解吸动力学曲线

      Fig.  6.  Adsorption isotgherm curves

      表  1  供试黄土的基本理化性质

      Table  1.   Basic characteristics of the studied loess soil

      pH HCO3-(g/kg) Cl-(g/kg) Corg(mg/g) CEC(cmol/kg)
      8.00 7.664 7.36 0.102 3.23
      注:CEC.阳离子交换容量.
      下载: 导出CSV

      表  2  菲吸附等温线拟合系数

      Table  2.   Coefficients in Sorption isotherm equations

      CNaCl(mol/L) F型 H型
      n lnKf R2 Kd R2
      0.0 0.66 5.3 0.990 128.34 0.997
      注:lnQe=lnKf +1/n lnCe.
      下载: 导出CSV

      表  3  加入NaCl后菲的吸附等温线拟合系数

      Table  3.   Coefficients in sorption isotherm equations while NaCl was added

      CNaCl(mol/L) 平衡时间(h) F型 直线型
      n lnKf R2 Kd R2
      0.0 ~5 0.66 5.35 0.982 125.74 0.998
      0.001 ~4.3 0.59 5.91 0.983 102.91 0.998
      0.002 ~4.3 0.69 5.50 0.999 95.12 0.998
      0.006 ~4.3 0.69 5.32 0.983 91.5 0.995
      0.01 ~4.5 0.61 5.46 0.976 98.65 0.997
      0.1 ~7.0 0.58 6.03 0.979 160.17 0.998
      0.5 ~8.0 0.56 6.32 0.982 240.07 0.996
      下载: 导出CSV

      表  4  加入MgCl2后菲的吸附等温线拟合系数

      Table  4.   Coefficients in sorption isotherm equations while MgCl2 was added

      CMgCl2(mol/L) F型 H型
      n lnKf R2 Kd R2
      0.000 0.66 5.35 0.982 125.74 0.998
      0.001 0.74 5.94 0.966 254.32 0.996
      0.002 0.63 6.09 0.995 285.39 0.993
      0.009 0.65 6.27 0.983 273.85 0.995
      下载: 导出CSV

      表  5  无机盐混合介入后菲的吸附等温线拟合系数

      Table  5.   Coefficients in sorption isotherm equations while NaCl and MgCl2 were added

      混合比例 F型 H型
      n lnKf R2 Kd R2
      0∶10 0.59 5.91 0.983 196.28 0.998
      1∶9 0.56 5.79 0.988 187.49 0.958
      2∶8 0.86 5.24 0.968 143.39 0.991
      8∶2 0.54 5.76 0.979 151.03 0.997
      10∶0 0.61 6.30 0.967 186.16 0.998
      注:混合比例为MgCl2∶NaCl.
      下载: 导出CSV

      表  6  加入SDBS后菲的吸附等温线拟合系数

      Table  6.   Coefficients in sorption isotherm equations while SDBS was added

      CSDBS(CMC) F型 H型
      n lnKf R2 Kd R2
      0.00 0.66 5.35 0.982 125.74 0.998
      0.01 0.60 5.32 0.995 135.54 0.977
      0.025 0.51 5.42 0.977 136.47 0.985
      0.05 0.68 5.45 0.955 139.36 0.987
      下载: 导出CSV

      表  7  无机金属盐与表面活性剂对菲吸附影响联合作用的实验条件与结果

      Table  7.   Conditions and results of the tests with mixture of salts and SDBS added

      实验条件 Q(μg/g) Kd
      超纯水+0.006 mol/LNaCl+0.01 CMC(SDBS) 10.60 167.41
      超纯水+0.002 mol/LMgCl2+0.01 CMC(SDBS) 10.49 264.98
      超纯水+0.009 mol/LMgCl2+0.01 CMC(SDBS) 11.92 285.87
      超纯水+0.006 mol/L(NaCl/MgCl28∶2)+0.01 CMC(SDBS) 11.83 183.96
      超纯水+0.006 mol/L(NaCl/MgCl21∶9)+0.01 CMC(SDBS) 12.44 227.03
      下载: 导出CSV

      表  8  SDBS与无机盐共存时黄土对菲吸附的等温线拟合结果

      Table  8.   Coefficients in sorption isotherm equations while mixture of salts and SDBS was added

      0.01CMC SDBS+盐 F型 H型
      n lnKf R2 Kd R2
      0.006 mol/L NaCl 0.62 5.58 0.995 172.42 0.995
      0.002 mol/L MgCl2 0.54 6.25 0.972 246.98 0.953
      NaCl∶MgCl2=1∶9 0.61 6.12 0.970 227.03 0.961
      下载: 导出CSV
    • [1] Ahn, C.K., Woo, S.H., Park, J.M., 2010. Surface solubilization of phenanthrene by surfactant sorbed on soils with different organic matter contents. Journal of Hazardous Materials, 177(1-3): 799-806. doi: 10.1016/j.jhazmat.2009.12.104
      [2] Beckles, D.M., Chen, W., Hughes, J.B., 2007. Bioavailability of polycyclic aromatic hydrocarbons sequestered in sediment: microbial study and model prediction. Environmental Toxicology and Chemistry, 26(5): 878-883. doi: 10.1897/06-410R.1
      [3] Chen, W., Cong, L.L., Hu, H.L., et al., 2008. Release of adsorption polycyclic aromatic hydrocarbons under cosolvent treatment: implications for availability and fate. Environmental Toxicology and Chemistry, 27(1): 112-118. doi: 10.1897/07-170.1
      [4] Dai, S.G., 2006. Environmental chemistry. High Education Publishing House, Beijing, 147-279 (in Chinese).
      [5] Huang, W.L., Walter, J., Weber, J.R., 1997. A distributed reactivity model for sorption by soils and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains. Environ. Sci. Technol. , 31(9): 2562-2569. doi: 10.1021/es960995e
      [6] Kim, E.S., Lee, D.H., Yum, B.W., et al., 2005. The effect of ionic strength and hardness of water on the non-ionic surfactant-enhanced remediation of perchloroethylene contamination. Journal of Hazardous Materials, 119(1-3): 195-203. doi: 10.1016/j.jhazmat.2004.12.015
      [7] Kim, I.S., Park, J.S., Kim, K.W., 2001. Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Applied Geochemistry, 16(11-12): 1419-1428. doi: 10.1016/S0883-2927(01)00043-9
      [8] Lee, C.L., Kuo, L.J., Wang, H.L., et al., 2003. Effects of ionic strength on the binding of phenanthrene and pyrene to humic substances: three-stage variation model. Water Research, 37(17): 4250-4258. doi: 10.1016/S0043-1354(03)00309-9
      [9] Lippold, H., Gottschalch, U., Kupsch, H., 2008. Joint influence of surfactants and humic matter on PAH solubility. Are mixed micelles formed? Chemosphere, 70(11): 1979-1986. doi: 10.1016/j.chemosphere.2007.09.040
      [10] Ping, L.F., Luo, Y.M., 2005. Effects of organic matter on environmental behaviors of polycyclic aromatic hydrocarbons. Soils, 37(4): 362-369 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TURA200504002.htm
      [11] Shen, Z.L., 1993. The basis of hydrogeochemistry. Geological Publishing House, Beijing, 6-78 (in Chinese).
      [12] Shukla. P., Gopalani, M., Ramteke, D.S., et al., 2007. Influence of salinity on PAH uptake from water soluble fraction of crude oil in Tilapia mossambica. Bull. Environ. Contam. Toxicol. , 79(6): 601-605. doi: 10.1016/j.marpolbul.2006.02.009
      [13] Sun, H.W., Wu, W.L., Wang, L., 2009. Phenanthrene partitioning in sediment-surfactant-fresh /saline water systems. Environmental Pollution, 157(8-9): 2520-2528. doi: 10.1016/j.envpol.2009.03.012
      [14] Wu, W.L., Sun, H.W., 2010. Sorption-desorption hysteresis of phenanthrene: effect of nanopores, solute concentration, and salinity. Chemosphere, 81(7): 961-967. doi: 10.1016/j.chemosphere.2010.07.051
      [15] Zhan, H.Y., Jiang, Y.F., Yuan, J.M., et al., 2005. Sorption kinetics of naphthalene and phenanthrene to loess soils. Environ. Sci. Technol. , 28(5): 10-11, 65 (in Chinese).
      [16] Zhu, K., Zhan, H.Y., Wang, E.P., 2006. Sorption of phenanthrene and naphthalene in natural and HDTMA-modified loess soils. Journal of Agro-Environment Science, 25(4): 958-963 (in Chinese with English abstract). http://www.cqvip.com/QK/92252A/200604/22548592.html
      [17] 戴树桂, 2006. 环境化学. 北京: 高等教育出版社, 147-279.
      [18] 平立凤, 骆永明, 2005. 有机质对多环芳烃环境行为影响的研究进展. 土壤, 37(4): 362-369. doi: 10.3321/j.issn:0253-9829.2005.04.003
      [19] 沈照理, 1993. 水文地球化学基础. 北京: 地质出版社, 6-78.
      [20] 展惠英, 蒋煜峰, 袁建梅, 等, 2005. 萘和菲在黄土上的吸附动力学. 环境科学与技术, 28(5): 10-11, 65. doi: 10.3969/j.issn.1003-6504.2005.05.005
      [21] 朱琨, 展惠英, 王恩鹏, 等, 2006. 萘和菲在天然和改性黄土中的吸附特性研究. 农业环境科学学报, 25(4): 958-963. doi: 10.3321/j.issn:1672-2043.2006.04.028
    • 加载中
    图(6) / 表(8)
    计量
    • 文章访问数:  3086
    • HTML全文浏览量:  179
    • PDF下载量:  61
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-09-15
    • 刊出日期:  2012-03-15

    目录

      /

      返回文章
      返回