Jointed Effects of Inorganic Salts and Sodium Dodecylbenzene Sulfonate (SDBS) on Sorption and Adsorption of Phenanthrene in Loess Soils
-
摘要: 以NaCl和MgCl2、十二烷基苯磺酸钠(SDBS)分别作为无机盐、表面活性剂的代表, 研究两者共存对菲在黄土中吸附/解吸行为联合影响的特点及其形成机制.结果表明, NaCl(≥0.1 mol/L)、MgCl2或SDBS的单独介入, 可缩短吸附平衡时间、增加吸附容量等, 即对吸附具促进作用, 随着介入浓度的升高, 促进作用越明显, 促进能力为MgCl2>SDBS>NaCl; 不改变吸附模式, 仍较好地符合F型与H型.NaCl与MgCl2同时介入, 对菲吸附的影响仍表现为促进作用, 呈现相加作用的特点, 且随着MgCl2浓度的升高, 促进作用更明显.NaCl(或及MgCl2)与SDBS的同时介入对吸附的联合影响, 总体上表现为相加作用, 但还呈拮抗作用的特点, 尤其MgCl2浓度较高时.NaCl或(及)MgCl2的存在, 或与SDBS共存时, 与纯水相比, 菲的解吸速度较快、解吸率较高、平衡时间较短, 且无滞后效应.可见, 无机盐与表面活性剂同时适量介入, 以强化菲等污染地下水系统的修复功效具一定的可行性.Abstract: To explore the characters and their possible mechanisms for the jointed effects of inorganic salts and surfactant on adsorption and desorption of phenanthrene in loess soils, batch tests were conducted with NaCl and MgCl2, SDBS selected as inorganic salt and surfactant models respectively. Results show that if one of NaCl (≥0.1 mol/L), MgCl2 and SDBS is added into the studied solution, the adsorption equilibrium time can be shortened, and adsorption capacity can be increased. In other words, this addition enhances the adsorption, and the enhancement is strengthened with increased additive concentration with enhancement abilities ranked as MgCl2 > SDBS > NaCl. Under this addition condition, the adsorption rates follow both Freundlich and Henry equations. When both of NaCl and MgCl2 are simultaneously added, the adsorption is also enhanced as additive effect. When salts and SDBD are added simultaneously, their joint effect, is also to enhance the adsorption as additive effect, tending to antagonism, especially when MgCl2 concentration is relatively high, because bath has affected the constant pore of the soil. Desorption tests determines that joint effects of NaCl, MgCl2 and SDBS added are to speed up desorption, shorten adsorption equilibrium time, and weaken its hysteresis. Therefore, inorganic salts and surfactants added with suitable doses are feasible for PAHs polluted groundwater system remediation.
-
Key words:
- sorption/desorption /
- inorganic salt /
- surfactant /
- loess soil /
- pollution control /
- hydrogeochemistry /
- environmental engineering
-
表 1 供试黄土的基本理化性质
Table 1. Basic characteristics of the studied loess soil
pH HCO3-(g/kg) Cl-(g/kg) Corg(mg/g) CEC(cmol/kg) 8.00 7.664 7.36 0.102 3.23 注:CEC.阳离子交换容量. 表 2 菲吸附等温线拟合系数
Table 2. Coefficients in Sorption isotherm equations
CNaCl(mol/L) F型 H型 n lnKf R2 Kd R2 0.0 0.66 5.3 0.990 128.34 0.997 注:lnQe=lnKf +1/n lnCe. 表 3 加入NaCl后菲的吸附等温线拟合系数
Table 3. Coefficients in sorption isotherm equations while NaCl was added
CNaCl(mol/L) 平衡时间(h) F型 直线型 n lnKf R2 Kd R2 0.0 ~5 0.66 5.35 0.982 125.74 0.998 0.001 ~4.3 0.59 5.91 0.983 102.91 0.998 0.002 ~4.3 0.69 5.50 0.999 95.12 0.998 0.006 ~4.3 0.69 5.32 0.983 91.5 0.995 0.01 ~4.5 0.61 5.46 0.976 98.65 0.997 0.1 ~7.0 0.58 6.03 0.979 160.17 0.998 0.5 ~8.0 0.56 6.32 0.982 240.07 0.996 表 4 加入MgCl2后菲的吸附等温线拟合系数
Table 4. Coefficients in sorption isotherm equations while MgCl2 was added
CMgCl2(mol/L) F型 H型 n lnKf R2 Kd R2 0.000 0.66 5.35 0.982 125.74 0.998 0.001 0.74 5.94 0.966 254.32 0.996 0.002 0.63 6.09 0.995 285.39 0.993 0.009 0.65 6.27 0.983 273.85 0.995 表 5 无机盐混合介入后菲的吸附等温线拟合系数
Table 5. Coefficients in sorption isotherm equations while NaCl and MgCl2 were added
混合比例 F型 H型 n lnKf R2 Kd R2 0∶10 0.59 5.91 0.983 196.28 0.998 1∶9 0.56 5.79 0.988 187.49 0.958 2∶8 0.86 5.24 0.968 143.39 0.991 8∶2 0.54 5.76 0.979 151.03 0.997 10∶0 0.61 6.30 0.967 186.16 0.998 注:混合比例为MgCl2∶NaCl. 表 6 加入SDBS后菲的吸附等温线拟合系数
Table 6. Coefficients in sorption isotherm equations while SDBS was added
CSDBS(CMC) F型 H型 n lnKf R2 Kd R2 0.00 0.66 5.35 0.982 125.74 0.998 0.01 0.60 5.32 0.995 135.54 0.977 0.025 0.51 5.42 0.977 136.47 0.985 0.05 0.68 5.45 0.955 139.36 0.987 表 7 无机金属盐与表面活性剂对菲吸附影响联合作用的实验条件与结果
Table 7. Conditions and results of the tests with mixture of salts and SDBS added
实验条件 Q(μg/g) Kd 超纯水+0.006 mol/LNaCl+0.01 CMC(SDBS) 10.60 167.41 超纯水+0.002 mol/LMgCl2+0.01 CMC(SDBS) 10.49 264.98 超纯水+0.009 mol/LMgCl2+0.01 CMC(SDBS) 11.92 285.87 超纯水+0.006 mol/L(NaCl/MgCl28∶2)+0.01 CMC(SDBS) 11.83 183.96 超纯水+0.006 mol/L(NaCl/MgCl21∶9)+0.01 CMC(SDBS) 12.44 227.03 表 8 SDBS与无机盐共存时黄土对菲吸附的等温线拟合结果
Table 8. Coefficients in sorption isotherm equations while mixture of salts and SDBS was added
0.01CMC SDBS+盐 F型 H型 n lnKf R2 Kd R2 0.006 mol/L NaCl 0.62 5.58 0.995 172.42 0.995 0.002 mol/L MgCl2 0.54 6.25 0.972 246.98 0.953 NaCl∶MgCl2=1∶9 0.61 6.12 0.970 227.03 0.961 -
[1] Ahn, C.K., Woo, S.H., Park, J.M., 2010. Surface solubilization of phenanthrene by surfactant sorbed on soils with different organic matter contents. Journal of Hazardous Materials, 177(1-3): 799-806. doi: 10.1016/j.jhazmat.2009.12.104 [2] Beckles, D.M., Chen, W., Hughes, J.B., 2007. Bioavailability of polycyclic aromatic hydrocarbons sequestered in sediment: microbial study and model prediction. Environmental Toxicology and Chemistry, 26(5): 878-883. doi: 10.1897/06-410R.1 [3] Chen, W., Cong, L.L., Hu, H.L., et al., 2008. Release of adsorption polycyclic aromatic hydrocarbons under cosolvent treatment: implications for availability and fate. Environmental Toxicology and Chemistry, 27(1): 112-118. doi: 10.1897/07-170.1 [4] Dai, S.G., 2006. Environmental chemistry. High Education Publishing House, Beijing, 147-279 (in Chinese). [5] Huang, W.L., Walter, J., Weber, J.R., 1997. A distributed reactivity model for sorption by soils and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains. Environ. Sci. Technol. , 31(9): 2562-2569. doi: 10.1021/es960995e [6] Kim, E.S., Lee, D.H., Yum, B.W., et al., 2005. The effect of ionic strength and hardness of water on the non-ionic surfactant-enhanced remediation of perchloroethylene contamination. Journal of Hazardous Materials, 119(1-3): 195-203. doi: 10.1016/j.jhazmat.2004.12.015 [7] Kim, I.S., Park, J.S., Kim, K.W., 2001. Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Applied Geochemistry, 16(11-12): 1419-1428. doi: 10.1016/S0883-2927(01)00043-9 [8] Lee, C.L., Kuo, L.J., Wang, H.L., et al., 2003. Effects of ionic strength on the binding of phenanthrene and pyrene to humic substances: three-stage variation model. Water Research, 37(17): 4250-4258. doi: 10.1016/S0043-1354(03)00309-9 [9] Lippold, H., Gottschalch, U., Kupsch, H., 2008. Joint influence of surfactants and humic matter on PAH solubility. Are mixed micelles formed? Chemosphere, 70(11): 1979-1986. doi: 10.1016/j.chemosphere.2007.09.040 [10] Ping, L.F., Luo, Y.M., 2005. Effects of organic matter on environmental behaviors of polycyclic aromatic hydrocarbons. Soils, 37(4): 362-369 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TURA200504002.htm [11] Shen, Z.L., 1993. The basis of hydrogeochemistry. Geological Publishing House, Beijing, 6-78 (in Chinese). [12] Shukla. P., Gopalani, M., Ramteke, D.S., et al., 2007. Influence of salinity on PAH uptake from water soluble fraction of crude oil in Tilapia mossambica. Bull. Environ. Contam. Toxicol. , 79(6): 601-605. doi: 10.1016/j.marpolbul.2006.02.009 [13] Sun, H.W., Wu, W.L., Wang, L., 2009. Phenanthrene partitioning in sediment-surfactant-fresh /saline water systems. Environmental Pollution, 157(8-9): 2520-2528. doi: 10.1016/j.envpol.2009.03.012 [14] Wu, W.L., Sun, H.W., 2010. Sorption-desorption hysteresis of phenanthrene: effect of nanopores, solute concentration, and salinity. Chemosphere, 81(7): 961-967. doi: 10.1016/j.chemosphere.2010.07.051 [15] Zhan, H.Y., Jiang, Y.F., Yuan, J.M., et al., 2005. Sorption kinetics of naphthalene and phenanthrene to loess soils. Environ. Sci. Technol. , 28(5): 10-11, 65 (in Chinese). [16] Zhu, K., Zhan, H.Y., Wang, E.P., 2006. Sorption of phenanthrene and naphthalene in natural and HDTMA-modified loess soils. Journal of Agro-Environment Science, 25(4): 958-963 (in Chinese with English abstract). http://www.cqvip.com/QK/92252A/200604/22548592.html [17] 戴树桂, 2006. 环境化学. 北京: 高等教育出版社, 147-279. [18] 平立凤, 骆永明, 2005. 有机质对多环芳烃环境行为影响的研究进展. 土壤, 37(4): 362-369. doi: 10.3321/j.issn:0253-9829.2005.04.003 [19] 沈照理, 1993. 水文地球化学基础. 北京: 地质出版社, 6-78. [20] 展惠英, 蒋煜峰, 袁建梅, 等, 2005. 萘和菲在黄土上的吸附动力学. 环境科学与技术, 28(5): 10-11, 65. doi: 10.3969/j.issn.1003-6504.2005.05.005 [21] 朱琨, 展惠英, 王恩鹏, 等, 2006. 萘和菲在天然和改性黄土中的吸附特性研究. 农业环境科学学报, 25(4): 958-963. doi: 10.3321/j.issn:1672-2043.2006.04.028