• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    双室电化学体系中产电微生物与黄铁矿单晶协同电子转移反应

    丁竑瑞 李艳 鲁安怀

    丁竑瑞, 李艳, 鲁安怀, 2012. 双室电化学体系中产电微生物与黄铁矿单晶协同电子转移反应. 地球科学, 37(2): 313-318. doi: 10.3799/dqkx.2012.035
    引用本文: 丁竑瑞, 李艳, 鲁安怀, 2012. 双室电化学体系中产电微生物与黄铁矿单晶协同电子转移反应. 地球科学, 37(2): 313-318. doi: 10.3799/dqkx.2012.035
    DING Hong-rui, LI Yan, LU An-huai, 2012. Electrochemical Study on Electron Transfer Process between Electricigens and Single Crystal Pyrite in a Dual-Chambered Equipment. Earth Science, 37(2): 313-318. doi: 10.3799/dqkx.2012.035
    Citation: DING Hong-rui, LI Yan, LU An-huai, 2012. Electrochemical Study on Electron Transfer Process between Electricigens and Single Crystal Pyrite in a Dual-Chambered Equipment. Earth Science, 37(2): 313-318. doi: 10.3799/dqkx.2012.035

    双室电化学体系中产电微生物与黄铁矿单晶协同电子转移反应

    doi: 10.3799/dqkx.2012.035
    基金项目: 

    国家重点基础研究发展计划项目 2007CB815602

    详细信息
      作者简介:

      丁竑瑞(1985-), 男, 博士, 主要从事环境矿物学研究.E-mail: dhr_100@163.com

    • 中图分类号: P578.2;X78

    Electrochemical Study on Electron Transfer Process between Electricigens and Single Crystal Pyrite in a Dual-Chambered Equipment

    • 摘要: 通过构建产电微生物—黄铁矿双室体系, 应用电化学方法对以黄铁矿单晶电极作为产电微生物电子受体时, 两者间的电子转移过程进行表征和分析.结果显示, 与惰性石墨电极相比, 以黄铁矿单晶作为产电微生物电子受体时, 体系最大功率密度提升132.9%;电化学阻抗谱显示, 黄铁矿单晶电极极化电阻降低98.8%, 表现出优良的电化学反应特性, 表明产电微生物与黄铁矿单晶间具有良好的电子转移活性.籍由产电微生物对底物的氧化作用, 与黄铁矿单晶接受产电微生物电子在0.34 V(相对于饱和甘汞电极)处发生的还原反应, 构成了两者间完整的协同电子转移过程.

       

    • 图  1  产电微生物—黄铁矿双室研究体系示意

      Fig.  1.  Schematic diagram of electricigen-pyrite system in a dual-chambered setup

      图  2  黄铁矿/石墨电极电流密度-负载曲线

      Fig.  2.  Current density-out loader curve of pyrite and graphite electrode

      图  3  黄铁矿/石墨电极功率密度曲线

      Fig.  3.  Power density curve of pyrite and graphite electrode

      图  4  黄铁矿/石墨电极阴极电极电势-电流密度曲线

      Fig.  4.  Potential-current density curve of pyrite and graphite electrode as cathode

      图  5  黄铁矿电极/石墨对照EIS拟合结果

      Fig.  5.  EIS fitting results of pyrite electrode and graphite as control

      图  6  黄铁矿电极/石墨对照循环伏安结果

      Fig.  6.  CV results of pyrite and graphite electrode

      图  7  不同溶解氧条件下黄铁矿电极线性扫描伏安结果

      Fig.  7.  LSV results of pyrite electrode under different DO concentrations

      表  1  黄铁矿电极/石墨对照EIS拟合参数

      Table  1.   Fit parameters for EIS of pyrite electrode and graphite as control

      参数 黄铁矿 石墨对照
      Rp(Ω) 30.35 2 523
      Rs (Ω) 4.059 2.256
      C(F) 0.002 475 0.037 26
      下载: 导出CSV
    • [1] Almeida, C.M.V.B., Giannetti, B.F., 2003. The electrochemical behavior of pyrite-pyrrhotite mixtures. Journal of Electroanalytical Chemistry, 553(30): 27-34. doi: 10.1016/S0022-0728(03)00254-7
      [2] Childers, S.E., Ciufo, S., Lovley, D.R., 2002. Geobacter metallireducens accesses insoluble Fe (III) oxide by chemotaxis. Nature, 416(6882): 767-769. doi: 10.1038/416767a
      [3] Dean, J.A., 1991. Lange's handbook of chemistry (13rd Edition). Translated by Shang, J.F., Cao, S.J., Xin, W.M., et al. . Science Press, Beijing (in Chinese).
      [4] Dong, H., 2010. Mineral-microbe interactions: a review. Frontiers of Earth Science in China, 4(2): 127-147. doi: 10.1007/s11707-010-0022-8
      [5] Evangelou, V.P.B., Zhang, Y.L., 1995. A review: pyrite oxidation mechanisms and acid mine drainage prevention. Critical Reviews in Environmental Science & Technology, 25(2): 141-199. doi: 10.1080/10643389509388477
      [6] Giorgi, L., Antolini, E., Pozio, A., et al., 1998. Influence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells. Electrochimica Acta, 43(24): 3675-3680. doi: 10.1016/S0013-4686(98)00125-X
      [7] Kim, H.J., Park, H.S., Hyun, M.S., et al., 2002. A mediator less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciense. Enzyme and Microbial Technology, 30(2): 145-152. doi: 10.1016/S0141-0229(01)00478-1
      [8] Liu, H., Logan, B.E., 2004. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology, 38(14): 4040-4046. doi: 10.1021/es0499344
      [9] Logan, B.E., Hamelers, B., Rozendal, R., et al., 2006. Microbial fuel cells: methodology and technology. Environmental Science & Technology, 40(17): 5181-5192. doi: 10.1021/es0605016
      [10] Manohar, A.K., Bretschger, O., Nealson, K.H., et al., 2008. The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell. Bioelectrochemistry, 72(2): 149-154. doi: 10.1016/j.bioelechem.2008.01.004
      [11] Marshall, C.W., May, H.D., 2009. Electrochemical evidence of direct electrode reduction by a thermophilic gram-positive bacterium, Thermincola ferriacetica. Energy & Environmental Science, 2(6): 699-705. doi: 10.1039/B823237G
      [12] Myers, C.R., Nealson, K.H., 1988. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science, 240(4857): 1319-1321. doi: 10.1126/science.240.4857.1319
      [13] Rabaey, K., Verstraete, W., 2005. Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology, 23(6): 291-298. doi: 10.1016/j.tibtech.2005.04.008
      [14] Roden, E.E., Urrutia, M.M., Mann, C.J., 2000. Bacterial reductive dissolution of crystalline Fe (III) oxide in continuous-flow column reactors. Applied and Environmental Microbiology, 66(3): 1062-1065. doi: 10.1128/AEM.66.3.1062-1065.2000
      [15] Schaetzle, O., Barrière, F., Baronian, K., 2008. Bacteria and yeasts as catalysts in microbial fuel cells: electron transfer from micro-organisms to electrodes for green electricity. Energy & Environmental Science, 1(6): 607-620. doi: 10.1039/B810642H
      [16] Schippers, A., Jørgensen, B.B., 2002. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochimica et Cosmochimica Acta, 66(1): 85-92. doi: 10.1016/S0016-7037(01)00745-1
      [17] Schröder, U., Nießen, J., Scholz, F., 2003. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angewandte Chemie, 115(25): 2986-2989. doi: 10.1002/ange.200350918
      [18] Tao, D.P., Richardson, P.E., Luttrell, G.H., et al., 2003. Electrochemical studies of pyrite oxidation and reduction using freshly-fractured electrodes and rotating ring-disc electrodes. Electrochimica Acta, 48(24): 3615-3623. doi: 10.1016/S0013-4686(03)00482-1
      [19] Zhao, F., Harnisch, F., Schröder, U., et al., 2006. Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environmental Science & Technology, 40(17): 5193-5199. doi: 10.1021/es060332p
      [20] Dean, J.A., 主编, 1991. 兰氏化学手册, 中文版(第十三版). 尚久方, 操时杰, 辛无名, 等译. 北京: 科学出版社.
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  3140
    • HTML全文浏览量:  187
    • PDF下载量:  94
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-08-12
    • 刊出日期:  2012-03-15

    目录

      /

      返回文章
      返回