• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    鄂尔多斯盆地山西组地下咸水CO2溶解能力

    胡丽莎 常春 于青春

    胡丽莎, 常春, 于青春, 2012. 鄂尔多斯盆地山西组地下咸水CO2溶解能力. 地球科学, 37(2): 301-306. doi: 10.3799/dqkx.2012.033
    引用本文: 胡丽莎, 常春, 于青春, 2012. 鄂尔多斯盆地山西组地下咸水CO2溶解能力. 地球科学, 37(2): 301-306. doi: 10.3799/dqkx.2012.033
    HU Li-sha, CHANG Chun, YU Qing-chun, 2012. CO2 Solubility in Shanxi Formation Water of Ordos Basin. Earth Science, 37(2): 301-306. doi: 10.3799/dqkx.2012.033
    Citation: HU Li-sha, CHANG Chun, YU Qing-chun, 2012. CO2 Solubility in Shanxi Formation Water of Ordos Basin. Earth Science, 37(2): 301-306. doi: 10.3799/dqkx.2012.033

    鄂尔多斯盆地山西组地下咸水CO2溶解能力

    doi: 10.3799/dqkx.2012.033
    基金项目: 

    国家自然科学基金项目 40772208

    中央高校基本科研业务基金 2011YYL147

    详细信息
      作者简介:

      胡丽莎(1986-), 女, 硕士研究生, 主要从事CO2地质储存研究.E-mail: lisahu1986@163.com

    • 中图分类号: X143

    CO2 Solubility in Shanxi Formation Water of Ordos Basin

    • 摘要: 实施CO2的地质储存是目前公认的减缓全球变暖的有效途径之一.潜在的储存场所包括衰竭的油气藏、深部不可开采煤层及深部咸水层.其中, 深部咸水层储存潜力最大.在发挥作用的诸多机理中, 溶解埋存具有埋存量大、作用时间较长以及安全性高的特点.在评价深部咸水含水层CO2溶解储存潜力时, 溶解度是一个关键参数.提出了测定咸水含水层地层水CO2溶解度的方法, 并将其实际应用于鄂尔多斯盆地山西组地层水.鄂尔多斯盆地是我国重要的能源基地, CO2排放量大, 排放浓度高.采集了野外实地水样, 进行了化学成分分析, 并人工合成该水样; 测定了40~80 ℃、8~12 MPa条件下CO2在该水样中的溶解度, 其结果可为评价鄂尔多斯盆地深部咸水含水层埋存能力提供依据.

       

    • 图  1  1970—2004年期间全球人为温室气体排放量

      Fig.  1.  Global anthropogenic greenhouse gas emissions during 1970 to 2004

      图  2  实验装置

      Fig.  2.  Schematic diagram of the apparatus

      图  3  样品采集位置

      Fig.  3.  Sample collecting position

      图  4  CO2在实验水样(a)和纯水(b)中的溶解度随压力的变化

      Fig.  4.  CO2 solubility in experimental water (a) and pure water (b) at different pressures

      图  5  CO2在实验水样中的溶解度随温度的变化

      Fig.  5.  CO2 solubility in experimental water at different pressures

      图  6  在10MPa(a)、40℃(b)条件下CO2在纯水与实验水样中溶解度的比较

      Fig.  6.  Comparison of CO2 solubility in pure water and experimental water at 10MPa (a) and 40℃(b)

      表  1  鄂尔多斯盆地山西组地下水化学成分

      Table  1.   Chemical composition of Shanxi Formation groundwater in Ordos basin

      项目 ρB(mg·L-1) CB(mmol·L-1)
      pH 6.90
      K+ 67.80 1.734
      Na+ 2405.00 104.565
      Ca2+ 888.50 22.168
      Mg2+ 32.79 1.349
      NH4+ <0.01 <0.001
      Al3+ <0.02
      Cl- 5151.49 145.317
      SO42- 29.10 0.303
      HCO3- 642.01 10.521
      下载: 导出CSV

      表  2  人工合成鄂尔多斯盆地山西组地下水实际用量

      Table  2.   Recipe for synthetic Shanxi Formation groundwater in Ordos basin

      试剂 级别 质量(g)
      NaCl 分析纯 5.5016
      KCl 分析纯 0.1267
      CaCl2 分析纯 2.4598
      MgCl2 分析纯 0.1283
      NaHCO3 分析纯 0.8838
      下载: 导出CSV

      表  3  人工合成山西组水样CO2溶解度数据

      Table  3.   Solubility of CO2 in synthetic Shanxi Formation water

      p(MPa) t(℃) CO2溶解度(g/100g水样)
      8 40 4.1325
      8 50 3.7660
      8 60 3.4672
      8 70 2.8024
      8 80 2.9234
      9 40 4.4582
      9 50 3.8240
      9 60 3.6137
      9 70 3.2732
      9 80 3.1099
      10 40 4.9088
      10 50 3.8848
      10 60 3.8328
      10 70 3.6542
      10 80 3.4597
      11 40 5.1454
      11 50 4.0946
      11 60 3.9191
      11 70 3.6859
      11 80 3.3427
      12 40 5.0948
      12 50 4.3054
      12 60 4.0520
      12 70 3.6379
      12 80 3.4382
      下载: 导出CSV
    • [1] Darwish, N.A., Hilal, N., 2010. A simple model for the prediction of CO2 solubility in H2O-NaCl system at geological sequestration conditions. Desalination, 260(1-3): 114-118. doi: 10.1016/j.desal.2010.04.056
      [2] Deparment of Chemistry, East China University of Science and Technology, et al., 2003. Analytical chemistry. Higher Education Press, Beijing, 425 (in Chinese).
      [3] Duan, Z.H., Sun, R., 2003. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2 000 bar. Chem. Geol. , 193(3-4): 257-271. doi: 10.1016/S0009-2541(02)00263-2
      [4] Ellis, A.J., Golding, R.M., 1963. The solubility of carbon dioxide above 100 ℃ in water and in sodium chloride solutions. American Journal of Science, 261(1): 47-60. doi: 10.2475/ajs.261.1.47
      [5] Ferrentinoa, G., Barlettaa, D., Balaban, M.O., et al., 2010. Measurement and prediction of CO2 solubility in sodium phosphate monobasic solutions for food treatment with high pressure carbon dioxide. The Journal of Supercritical Fluids, 52(1): 142-150. doi: 10.1016/j.supflu.2009.10.005
      [6] Hou, G.C., Zhang, M.S., 2008. The survey and research on groundwater in Ordos basin. Geological Publishing House, Beijing, 85 (in Chinese).
      [7] Li, X.C., Liu, Y.F., Bai, B., et al., 2006. Ranking and screening of CO2 saline aquifer storage zones in China. Chinese Journal of Rock Mechanics and Engineering, 25(5): 963-968 (in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&cmd=prlinks&retmode=ref&id=21866545
      [8] Li, X.C., Ohsumia, T., Koide, H., et al., 2005. Near-future perspective of CO2 aquifer storage in Japan: site selection and capacity. Energy, 30(11-12): 2360-2369. doi: 10.1016/j.energy.2004.08.026
      [9] Liu, Y.H., Hou, M.Q., Yang, G.Y., et al., 2011. Solubility of CO2 in aqueous solutions of NaCl, KCl, CaCl2 and their mixed salts at different temperatures and pressures. The Journal of Supercritical Fluids, 56(2): 125-129. doi: 10.1016/j.supflu.2010.12.003
      [10] Ren, X.K., Cui, Y.J., Bu, X.P., et al., 2010. Analysis on CO2 storage potentiality in Ordos basin. Energy of China, 32(1): 29-32 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGLN201001015.htm
      [11] Shen, P.P., Liao, X.W., 2009. The technology of carbon dioxide stored in geological media and enhanced oil recovery. Petroleum Industry Press, Beijing, 39 (in Chinese).
      [12] Teng, H., Yamasaki, A., 1998. Solubility of liquid CO2 in synthetic sea water at temperatures from 278 K to 293 K and pressures from 6.44 MPa to 29.49 MPa, and densities of the corresponding aquous solutions. J. Chem. Eng. Data. , 43(1): 2-5. doi: 10.1021/je9700737
      [13] Wiebe, R., Gaddy, V.L., 1939. The solubility in water of carbon dioxide at 50 ℃, 75 ℃ and 100 ℃, at pressures to 700 atmospheres. J. Am. Chem. Soc. , 61(2): 315-318. doi: 10.1021/ja01871a025
      [14] Wiebe, R., Gaddy, V.L., 1940. The solubility of carbon dioxide in water at various temperatures from 12 to 40 ℃ and at pressures to 500 atmospheres. J. Am. Chem. Soc. , 62(4): 815-817. doi: 10.1021/ja01861a033
      [15] Portier, S., Rochelle, C., 2005. Modeling CO2 solubility in pure water and NaCl-type waters from 0 to 300 ℃ and from 1 to 300 bar: application to the Utsira Formation at Sleipner. Chemical Geology, 217(3-4): 187-199. doi: 10.1016/j.chemgeo.2004.12.007
      [16] Zeng, R.S., Sun, S., Chen, D.Z., et al., 2004. Decrease carbon dioxide emission into the atmosphere-underground disposal of carbon dioxide. Bulletin of National Natural Science Foundation of China, 4: 196-200 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/zgkxjj200404002
      [17] 华东理工大学化学系等, 2003. 分析化学. 北京: 高等教育出版社, 425.
      [18] 侯光才, 张茂省, 2008. 鄂尔多斯盆地地下水勘查系统. 北京: 地质出版社, 85.
      [19] 李小春, 刘延锋, 白冰, 等, 2006. 中国深部咸水含水层CO2储存优先区域选择. 岩石力学与工程学报, 25(5): 963-968. doi: 10.3321/j.issn:1000-6915.2006.05.015
      [20] 任相坤, 崔永君, 步学朋, 等, 2010. 鄂尔多斯盆地CO2地质封存潜力分析. 中国能源, 32(1): 29-32. doi: 10.3969/j.issn.1003-2355.2010.01.006
      [21] 沈平平, 廖新维, 2009. 二氧化碳地质埋存与提高石油采收率技术. 北京: 石油工业出版社, 39.
      [22] 曾荣树, 孙枢, 陈代钊, 等, 2004. 减少二氧化碳向大气层的排放——二氧化碳地下储存研究. 中国科学基金, 4: 196-200. doi: 10.3969/j.issn.1000-8217.2004.04.002
    • 加载中
    图(6) / 表(3)
    计量
    • 文章访问数:  3769
    • HTML全文浏览量:  197
    • PDF下载量:  79
    • 被引次数: 0
    出版历程
    • 收稿日期:  2011-06-20
    • 刊出日期:  2012-03-15

    目录

      /

      返回文章
      返回