Cross Action of Mn-Cr (Ⅵ) in Water-Soil-Rock System
-
摘要: 采用窄缝槽实验装置, 分别模拟岩溶水系统内单一Mn、Cr(Ⅵ)以及Mn-Cr(Ⅵ)复合体系的动态吸附、物理解吸、化学解吸3个阶段的行为特征, 分析含锰、铬污水对地下水的污染规律及其相互作用.结果表明: 土壤对单一体系Mn的吸附率远大于Cr(Ⅵ), 但两者均以专性吸附为主, 不易活化、迁移; 在复合体系内均出现吸附率降低、解吸率升高, 表现为以物理吸附为主, 易活化、迁移, 从而引起水体重金属污染; 两者表现为显著的协同作用, 但Mn对Cr(Ⅵ)的影响远小于Cr(Ⅵ)对Mn的影响; 在酸性环境下, Mn对Cr(Ⅵ)的化学活性有轻微的抑制作用.Abstract: Using narrow-slit experimental plants, this paper simulates behavioral features of dynamic adsorption, physical desorption, chemical desorption of single Mn system, single Cr (Ⅵ) system and Mn-Cr (Ⅵ) complex system in karst groundwater system. The results indicate that: (1) Under a single system, soil absorption rate of Mn is much larger than that of Cr (Ⅵ); and the two are of specific-orientated adsorption, and difficult to be activated and migrate; (2) Under complex system, the two metals both show absorption rate reduction, desorption rate increase and easy to be activated, migrate; (3) the two metals both show synergistic action, however the effect of Mn to Cr (Ⅵ) is smaller than that of Cr (Ⅵ) to Mn.
-
Key words:
- heavy metals /
- cross action /
- karst area /
- water-soil-rock system /
- adsorption /
- desorption /
- hydrogeology /
- environmental engineering
-
表 1 土壤理化性质
Table 1. Physical and chemical properties of the soil
pH CEC(cmol/L) TOC(%) TN(%) Mn(μg/g) 总Cr(μg/g) 有效N(μg/g) 有效P(μg/g) 有效K(μg/g) Fe2O3(%) CaO(%) 7.73 28.09 0.30 0.050 80.5 <0.5 22.0 3.88 35.90 8.78 0.65 表 2 实验结果
Table 2. Test results
溶液类型 组分 动态吸附 物理解吸 化学解吸 时间(h) 吸附总量(mg)/吸附率(%) 时间(h) 解吸量(mg)/解吸率(%) 时间(h) 解吸量(mg)/解吸率(%) 单一体系 Mn 175 89.6/85.3 68 7.05/7.9 126 0.71/0.8 Cr(Ⅵ) 115 32.5/47.1 60 10.8/33.2 84 1.99/6.1 复合体系 Mn 225 21.4/15.9 320 11.19/52.3 45 0.48/2.2 Cr(Ⅵ) 250 49.8/33.2 400 31.53/63.3 100 2.79/5.6 -
[1] Boik, J., Kirakosyan, A., Kaufman, P.B., et al., 2009. Interactions of bioactive plant metabolites: synergism, antagonism, and additivity. In: Kirakosyan, A., Kaufman, P.B., eds., Recent advances in plant biotechnology. Springer Science+Bussiness Media, LLC, New York, 213-230. doi: 10.1007/978-1-4419-0194-1_10 [2] Fakayode, S.O., Onianwa, P.C., 2002. Heavy metal contamination of soil, and bioaccumulation in Guinea grass (Panicum maximum) around Ikeja industrial estate, Lagos, Nigeria. Environmental Geology, 43(1-2): 145-150. doi:10.1007/s00254- 002-0633-9 [3] Huang, Q.Y., Tang, J.S., Shi, J., et al., 2008. Migration and conversion of Cr (Ⅵ) in Fe-Mn nodule. Guangxi Agriculture Science, 40(2): 184-189 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-southern-agriculture_thesis/020122590626.html [4] Li, G.H., Cao, Z.M., Lan, D.Z., et al., 2008. Variation of depositional environment and accumulation of heavy metals in West Harbour, Xiamen. Earth Science—Journal of China University of Geosciences, 13(2): 22-223 (in Chinese with English abstract). [5] Luo, Y.P., Wu, X.F., Li, M.S., et al., 2007. Investigation of main plant species and assessment of soil heavy metal pollutions in manganese mine wastelands in North Guangxi. Ecology and Environment, 16(4): 1149-1153 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRYJ200704018.htm [6] Mingorance, M.D., Oliva, R.S., 2006. Heavy metals content in N. Oleander leaves As urban pollution assessment. Environmental Monitoring and Assessment, 119(1-3): 57-68. doi: 10.1007/s10661-005-9004-9 [7] Stehling, F., Kindorf, J., 1994. Interacting environmental influences: concepts of synergism, antagonism, and superposition. Annals of Operations Research, 54(1): 291-304. doi: 10.1007/BF02031739 [8] Sun, T.H., Zhou, Q.X., 2002. Retrospect and prospect of pollution ecology. Chin. J. Appl. Ecol., 13(2): 221-223 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-YYSB200202026.htm [9] Verma, S.R., Rani, S., Dalela, R.C., 1981. Synergism, antagonism, and additivity of phenol, pentachlorophenol, and dinitrophenol to a fish (Notopterus notopterus). Arch. Environm. Contam. Toxicol. 10(3): 365-370. doi: 10.1007/BF01055638 [10] Yi, X., Li, W.F., 2005. Studies on absorption and reduction dynamics of Cr (Ⅵ) in Loessial soil. Journal of Arid Land Resources and Environment, 19(3): 141-144 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GHZH20050300Q.htm [11] Yu, X.Y., Zou, S.Z., 2009. Research on absorption, desorption behavior of manganese in rock-soil medium. Groundwater, 31(3): 82-84 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXSU200903028.htm [12] Zeng, Z.H., Cai, W.D., Zhang, Z.L., 2004. The migration enrichment of Mn element in groundwater and the controlling factor. Resources Environment & Engineering, 18(4): 39-42 (in Chinese with English abstract). http://www.researchgate.net/publication/285874810_The_migration_enrichment_of_Mn_element_in_groundwater_and_the_controlling_factor [13] Zhang, L., Song, F.B., 2005. Adsorption of heavy metals by soils and its affecting factors. Chinese Journal of Soil Science, 36(4): 629-631 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRTB200504036.htm [14] 黄琼瑶, 唐建生, 时坚, 等, 2009. 六价铬在铁锰结核中的迁移转化研究. 广西农业科学, 40(2): 184-189. https://www.cnki.com.cn/Article/CJFDTOTAL-GXNY200902018.htm [15] 李桂海, 曹志敏, 蓝东兆, 等, 2008. 厦门西港沉积环境变化及重金属的污染累积. 地球科学——中国地质大学学报, 13(2): 22-223. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200801020.htm [16] 罗亚平, 吴晓芙, 李明顺, 等, 2007. 桂北锰矿废弃地主要植物种类调查及土壤重金属污染评价. 生态环境, 16(4): 1149-1153. doi: 10.3969/j.issn.1674-5906.2007.04.016 [17] 孙铁珩, 周启星, 2002. 污染生态学研究的回顾与展望. 应用生态学报, 13(2): 22-223. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200202026.htm [18] 易秀, 李五福, 2005. 黄土性土壤对Cr(Ⅵ)的吸附还原动力学研究. 干旱区资源与环境, 19(3): 141-144. doi: 10.3969/j.issn.1003-7578.2005.03.027 [19] 于晓英, 邹胜章, 2009. 岩土介质中锰的吸附、解吸行为研究. 地下水, 31(3): 82-84. doi: 10.3969/j.issn.1004-1184.2009.03.027 [20] 曾昭华, 蔡伟娣, 张志良, 2004. 地下水中锰元素的迁移富集及其控制因素. 资源环境与工程, 18(4): 39-42. doi: 10.3969/j.issn.1671-1211.2004.04.008 [21] 张磊, 宋凤斌, 2005. 土壤吸附重金属的影响因素研究现状及展望. 土壤通报, 36(4): 629-631. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB200504036.htm