Characteristics of Water-Carbon Regime of Banzhai Karst Subterranean Stream System Covered by Virgin Forest in Soil Shortage Environment
-
摘要: 利用水文水化学自动记录仪, 对缺土的板寨原始森林区岩溶地下河系统径流排泄点进行了3个水文年(2007-01—2010-06)的自动监测, 运用水均衡计算、岩溶水流量衰减分析和H、O稳定同位素等方法, 对该地下河系统径流排泄点的水—碳动态进行了研究.结果表明: (1)原始森林的蒸散发异常强烈, 入渗系数低, 地下河产流少; (2)在缺乏土壤盖层的条件下, 即使是原始森林, 其水文(Q)、水化学(HCO3-浓度)调控能力仍然有限, 因而岩溶作用强度和碳汇能力较低.这些特征反映出土壤在水资源和碳循环调控中的重要作用.Abstract: Three hydrological years' automatic monitoring (from January, 2007 to June, 2010) was made in the discharge area of karst subterranean stream system covered by virgin forest in soil shortage environment with hydro-chemical auto-recordable instrument. In order to study the characteristics of water-carbon regime of discharge from this subterranean stream system, the methods of water balance calculation, karst water discharge recession analysis and H, O stable isotope analysis were used. The results show that: firstly, the evapotranspiration of virgin forest is unexpectedly high, indicated by low infiltration coefficient and low subterranean river runoff generation; secondly, under the conditions of shortage of soil cover, virgin forest has only moderate ability of regulation and control of hydrological (Q) and hydrochemical (HCO3- concentration) processes, which results in the karstification intensity and the relevant carbon sink capacity decrease. These characteristics reflect that soil plays important roles in the regulation and control of water resources and carbon cycle.
-
表 1 板寨岩溶地下河系统岩溶水水文及物理化学参数统计
Table 1. Statistics on the hydrological and physicochemical parameters of Banzhai karst subterranean stream
统计项目 统计样本个数 max min 平均值 标准偏差 变异系数 流量(L/s) 70174 13334.24 3.00 180.93 881.47 4.87 水温(℃) 57102 19.44 15.94 18.36 0.62 0.03 pH值 57102 9.16 7.22 7.70 0.22 0.03 [HCO3-](mg/L) 57102 369.25 141.00 218.89 21.17 0.10 SIC 57102 1.72 -0.37 0.34 0.21 - PCO2(Pa) 57102 1361.44 10.79 441.93 240.80 0.54 岩溶碳汇强度(tCO2·km-2·a-1) 57102 1426.45 0.36 25.28 102.08 4.04 注:统计时段为2008—2009年,这2年的降水总量为3 478mm,年平均降水量为1 739mm. 表 2 板寨岩溶地下河系统排泄流量衰减特征值
Table 2. Characteristic values of discharge regression of Banzhai karst subterranean stream
亚动态 衰减系数(1/15min) 15min衰减率(%) 流量平均衰减速度(L/15min) 相应岩溶水储存量(m3) 亚储存量所占比例(%) 1 0.02353 2.38 50.8346 303754.78 66.28 2 0.001452 0.16 0.1166 118052.85 25.76 3 0.000414 0.04 0.0016 36473.43 7.96 -
[1] Andrews, J.A., Schlesinger, W.H., 2001. Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Global Biogeochemical Cycles, 15(1): 149-162. doi: 10.1029/2000GB001278 [2] Baars, C., Jones, T.H., Edwards, D., 2008. Microcosm studies of the role of land plants in elevating soil carbon dioxide and chemical weathering. Global Biogeochemical Cycles, 22: GB3019. doi: 10.1029/2008GB003228 [3] Barnes, R.T., Raymond, P.A., 2009. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chemical Geology, 266(3-4): 318-327. doi: 10.1016/j.chemgeo.2009.06.018 [4] Berner, R.A., 1992. Weathering, plants, and the long-term carbon-cycle. Geochimica et Cosmochimica Acta, 56(8): 3225-3231. doi: 10.1016/0016-7037(92)90300-8 [5] Berner, R.A., 1997. The rise of plants and their effect on weathering and atmospheric CO2. Science, 276(5312): 544-546. doi: 10.1126/science.276.5312.544 [6] Cai, W.J., Guo, X.H., Chen, C.T., et al., 2008. A comparative overview of weathering intensity and HCO3- flux in the world's major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers. Continental Shelf Research, 28(12): 1538-1549. doi: 10.1016/j.csr.2007.10.014 [7] Cawley, J.L., Burruss, R.C., Holland, H.D., 1969. Chemical weathering in central Iceland—an analog of Pre-Silurian weathering. Science, 165(3891): 391-392. doi: 10.1126/science.165.3891.391 [8] Clark, I.D., Fritz, P., 2006. Environmental isotope in hydrogeology. Translated by Zhang, H., Zhang, X.J. . Yellow River Conservancy Press, Zhengzhou, 64 (in Chinese). [9] Drever, J.I., 1994. The effect of land plants on weathering rates of silicate minerals. Geochimica et Cosmochimica Acta, 58(10): 2325-2332. doi: 10.1016/0016-7037(94)90013-2 [10] Dreybrodt, W., Buhmann, D., Michaelis, J., et al., 1992. Geochemically controlled calcite precipitation by CO2 outgassing-field measurements of precipitation rates in comparison to theoretical predictions. Chem. Geol., 97(3-4): 285-294. doi: 10.1016/0009-2541(92)90082-G [11] Gislason, S.R., Arnorsson, S., Armannsson, H., 1996. Chemical weathering of basalt in Southwest Iceland: effects of runoff, age of rocks and vegetative/glacial cover. American Journal of Science, 296(8): 837-907. doi: 10.2475/ajs.296.8.837 [12] Gislason, S.R., Oelkers, E.H., Eiriksdottir, E.S., et al., 2009. Direct evidence of the feedback between climate and weathering. Earth and Planetary Science Letters, 277(1-2): 213-222. doi: 10.1016/j.epsl.2008.10.018 [13] Hagedorn, B., Cartwright, I., 2009. Climatic and lithologic controls on the temporal and spatial variability of CO2 consumption via chemical weathering: an example from the Australian Victorian Alps. Chemical Geology, 260(3-4): 234-253. doi: 10.1016/j.chemgeo.2008.12.019 [14] Han, X.R., Lu, R.A., Li, Q.S., 1993. Karst water system-study on big springs in Shanxi Province. Geological Publishing House, Beijing, 70-74 (in Chinese). [15] Huang, J.X., 1982. Flux recession equation and its application—an example from Luota karst valley. Carsologica Sinica, (2): 118-126 (in Chinese). [16] Komatsu, H., Maita, E., Otsuki, K., 2008. A model to estimate annual forest evapotranspiration in Japan from mean annual temperature. Journal of Hydrology, 348(3-4): 330-340. doi: 10.1016/j.jhydrol.2007.10.006 [17] Kump, L.R., Brantley, S.L., Arthur, M.A., 2000. Chemical weathering, atmospheric CO2, and climate. Annu. Rev. Earth Planet. Sci., 28: 611-667. doi: 10.1146/annurev.earth.28.1.611 [18] Liu, Z.H., Dreybrodt, W., Wang, H.J., 2010. A new direction in effective accounting for the atmospheric CO2 budget: considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms. Earth-Sci. Rev., 99(3-4): 162-172. doi: 10.1016/j.earscirev.2010.03.001 [19] Liu, Z.H., Groves, C., Yuan, D.X., et al., 2003. Study on the hydrochemical variations caused by the water-rock-gas interaction-an example from the Guilin karst experimental site. Hydrogeol. Engineer. Geol., 30(4): 13-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG200304003.htm [20] Liu, Z.H., Groves, C., Yuan, D.X., et al., 2004. Hydrochemical variations during flood pulses in the south-west China peak cluster karst: impacts of CaCO3-H2O-CO2 interactions. Hydrol. Proc., 18(13): 2423-2437. doi: 10.1002/hyp.1472 [21] Liu, Z.H., Zhao, J.B., 2000. Contribution of carbonate rock weathering to the atmospheric CO2 sink. Environ. Geol., 39(9): 1053-1058. doi: 10.1007/s002549900072 [22] Local Chronicles Commission of Libo County, Guizhou Province, 1997. The annals of the Libo County. Local Chronicles Press, Beijing (in Chinese). [23] Luota Karst Geology Research Group, 1984. Study on the Luota karst and its water resources assessment and utilization. Geological Publishing House, Beijing, 169-177 (in Chinese). [24] Macpherson, G.L., Roberts, J.A., Blair, J.M., 2008. Increasing shallow groundwater CO2 and limestone weathering, Konza Prairie, USA. Geochimica et Cosmochimica Acta, 72(23): 5581-5599. doi: 10.1016/j.gca.2008.09.004 [25] Pagani, M., Caldeira, K., Berner, R., et al., 2009. The role of terrestrial plants in limiting atmospheric CO2 decline over the past 24 million years. Nature, 460(7251): 85-U94. doi: 10.1038/nature08133 [26] Raymond, P.A., Oh, N.H., 2009. Long term changes of chemical weathering products in rivers heavily impacted from acid mine drainage: insights on the impact of coal mining on regional and global carbon and sulfur budgets. Earth and Planetary Science Letters, 284(1-2): 50-56. doi: 10.1016/j.epsl.2009.04.006 [27] Raymond, P.A., Oh, N.H., Turner, R.E., et al., 2008. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature, 451(7177): 449-452. doi: 10.1038/nature06505 [28] Riebe, C.S., Kirchner, J.W., Finkel, R.C., 2004. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth and Planetary Science Letters, 224(3-4): 547-562. doi: 10.1016/j.epsl.2004.05.019 [29] Tipper, E.T., Bickle, M.J., Galy, A., et al., 2006. The short term climatic sensitivity of carbonate and silicate weathering fluxes: insight from seasonal variations in river chemistry. Geochimica et Cosmochimica Acta, 70(11): 2737-2754. doi: 10.1016/j.gca.2006.03.005 [30] West, A.J., Galy, A., Bickle, M., 2005. Tectonic and climatic controls on silicate weathering. Earth and Planetary Science Letters, 235(1-2): 211-228. doi: 10.1016/j.epsl.2005.03.020 [31] White, A.F., Blum, A.E., 1995. Effects of climate on chemical-weathering in watersheds. Geochimica et Cosmochimica Acta, 59(9): 1729-1747. doi: 10.1016/0016-7037(95)00078-E [32] White, A.F., Bullen, T.D., Vivit, D.V., et al., 1999. The role of disseminated calcite in the chemical weathering of granitoid rocks. Geochimica et Cosmochimica Acta, 63(13-14): 1939-1953. doi: 10.1016/S0016-7037(99)00082-4 [33] Wigley, T.M.L., 1977. A computer program for determining the equilibrium speciation of aqueous solutions. British Geomorphological Research group, Technical Bulletin, 20: 1-40. http://www.researchgate.net/publication/44472269_WATSPEC_A_computer_program_for_determining_the_equilibrium_speciation_of_aqueous_solutions [34] Williams, E.L., Walter, L.M., Ku, T.C.W., et al., 2003. Effects of CO2 and nutrient availability on mineral weathering in controlled tree growth experiments. Global Biogeochemical Cycles, 17(2): 1041. doi: 10.1029/2002GB001925 [35] Wolff-Boenisch, D., Gabet, E.J., Burbank, D.W., et al., 2009. Spatial variations in chemical weathering and CO2 consumption in Nepalese High Himalayan catchments during the monsoon season. Geochimica et Cosmochimica Acta, 73(11): 3148-3170. doi: 10.1016/j.gca.2009.03.012 [36] Wu, C.G., 1982. Hydraulics (Volume one). Higher Education Press, Beijing, 364-420 (in Chinese). [37] Xu, D.Y., 1998. The adjust capacity of forest. World forestry research, (6): 24-28 (in Chinese). [38] Zeng, C., 2009. Study on the response of hydrology and hydrochemistry of karst systems to different land uses under humid subtropical climate (Dissertation). Chinese Academy of Geological Sciences, Beijing, 88-113 (in Chinese with English abstract). [39] Zeng, C., Zhao, M., Yang, R., et al., 2011. Comparison of karst process-related carbon sink intensity between an alpine glaciated and snow covered karst water system and humid subtropical karst water system. Advances in Climate Change Research, 7(3): 162-170 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QHBH201103004.htm [40] Zhang, X.B., Wang, S.J., He, X.B., et al., 2007. A preliminary discussion on the rocky desertification classification for slope land in karst mountain areas of southwest China. Earth and Environment, 35(2): 188-192 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ200702016.htm [41] Zhou, Z.X., 1987. The reports series of Maolan karst forest scientific expedition. Guizhou People Press, Guiyang, 74-95 (in Chinese with English abstract). [42] Clark, I.D., Fritz, P., 2006. 水文地质学中的环境同位素. 张慧, 张新基, 译. 郑州: 黄河水利出版社, 64. [43] 贵州省荔波县地方志编纂委员会, 1997. 荔波县志. 北京: 方志出版社. [44] 韩行瑞, 鲁荣安, 李庆松, 1993. 岩溶水系统——山西岩溶大泉研究. 北京: 地质出版社, 70-74. [45] 黄敬熙, 1982. 流量衰减方程及其应用——以洛塔岩溶盆地为例. 中国岩溶, (2): 118-126. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR198202005.htm [46] 刘再华, Chris, G., 袁道先, 等, 2003. 水-岩-气相互作用引起的水化学动态变化研究——以桂林岩溶试验场为例. 水文地质工程地质, (4): 13-18. doi: 10.3969/j.issn.1000-3665.2003.04.003 [47] 洛塔岩溶地质研究组, 1984. 洛塔岩溶及其水资源评价与利用的研究. 北京: 地质出版社, 169-177. [48] 吴持恭, 1982. 水力学(上册). 北京: 高等教育出版社, 364-420. [49] 徐德应, 1998. 森林调节水的能力. 世界林业研究, (6): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SJLY806.005.htm [50] 曾成, 2009. 湿亚热带岩溶系统水文水化学对不同土地利用的响应研究(博士学位论文). 北京: 中国地质科学院, 88-113. [51] 曾成, 赵敏, 杨睿, 等, 2011. 高寒冰雪覆盖型和湿润亚热带型岩溶水系统碳汇强度对比. 气候变化研究进展, 7(3): 162-170. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201103004.htm [52] 张信宝, 王世杰, 贺秀斌, 等, 2007. 西南岩溶山地坡地石漠化分类刍议. 地球与环境, 35(2): 188-192. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200702016.htm [53] 周政贤, 1987. 茂兰喀斯特森林科学考察集. 贵阳: 贵州人民出版社, 74-95.