The Risk Source Identification and Classification Methodology of Groundwater Pollution
-
摘要: 由于目前缺乏一套完整成熟的地下水污染风险源准确识别与分级方法, 在综合解析污染源结构、污染物输移过程评价的基础上, 构建了涵盖地下水易污性和地下水污染源两部分多因素耦合的风险源识别模型, 其中从污染源特性和污染物性质两方面建立了污染源危害性评价参数体系.以地下水易污性指数和污染源潜在危害性评价指数作为风险源分级指标, 采用乘积模型进行了风险源的评价与分级.选择某水源地对所建方法进行实例分析, 确定了地下水污染的高风险源区.结果表明, 污染源和地下水易污性共同决定了地下水污染的风险源, 所建方法对地下水污染的预防及污染源的有效监管有重要意义.Abstract: There is not a well-developed method to identify accurately the risk source of groundwater pollution at present, so a risk source identification model including the vulnerability and contaminant source, coupling of many factors, was constructed based on the comprehensive analysis of contaminant source structure and the evaluation of contaminant transport process in this study. Hazard assessment parameters system of contaminant source was established from the characteristics of sources and pollutants. Groundwater vulnerability index and potential hazard assessment index of contaminant source were used to evaluate and classify the risk source by product model. The method was applied to a groundwater supply source, and which identified high-risk areas of groundwater contamination. The results show that risk source of groundwater pollution was effectively determined by contaminant source and the vulnerability assessment, and the method was of great importance for the prevention of groundwater contamination and effective supervision of contaminant source.
-
表 1 污染源潜在危害性评价的参数体系
Table 1. Parameters system of contaminant source potential hazard assessment
总体指标 一级指标A 二级指标B 污染源潜在危害性评价 污染物的性质 毒性 迁移性 持久性 等标负荷 污染源的特性 排放位置 污染发生概率 影响面积 污染持续时间 表 2 污染源潜在危害性评价参数的分级
Table 2. Parameters rating of contaminant source potential hazard assessment
毒性 等级 迁移性 等级 持久性 等级 等标负荷 等级 排放位置 等级 污染发生概率 等级 影响面积 等级 持续时间 等级 ND 1 Koc>2 000 2 ≤15 d 1 <1 2 密封 1 <0.1% 2.5 小时 2 D 2.5 500<Koc≤2 000 4 15~60 d 3 1~10 4 地表 2.5 0.1%~1% 5 天 4 C 5 150<Koc≤500 6 60~180 d 7 10~100 6 部分密封 5 1%~10% 7.5 月 6 B 7.5 50<Koc≤150 8 180~360 d 8 100~1 000 8 10%~100% 10 年 8 A 10 Koc≤50 10 360~720 d 9 >1 000 10 地下 10 暴露 10 几十年 10 >720 d 10 注:毒性参考EPA等级划分,A类为人类致癌物;B类为很可能的人类致癌物,其中,B1为人类致癌证据有限,B2为动物致癌证据充足.但人类致癌证据很不足或无证据;C类为可能的人类致癌物;D类为尚不能进行人类致癌分类的组分;ND类为有对人类无致癌证据的组分.污染源各个方位都有隔离措施时称其为密封;污染源下方有隔离措施但其他方位未进行与外界隔离时称其为部分密封;污染源下方未有隔离措施的均称其为暴露. 表 3 污染源潜在危害性评价参数的权重
Table 3. Parameters weight of contaminant source potential hazard assessment
指标 毒性 迁移性 持久性 排放位置 等标负荷 影响面积 污染发生概率 持续时间 权重 0.265 0 0.132 5 0.132 5 0.110 0 0.194 3 0.095 7 0.035 0 0.035 0 表 4 DRASTIC方法中各参数的等级值
Table 4. Parameters rating of DRASTIC method
地下水埋深 净补给量 含水层介质 土壤介质 地形坡度 包气带介质类型 水力传导系数 D(m) 等级 R(mm) 等级 A 等级 S 等级 T(%) 等级 I 等级 C(m/d) 等级 0~1.5 10 0~50.8 1 块状页岩 1~3(2) 薄层或缺失 10 0~2 10 粉土/粘土 1~2(1) 0.04~4.1 1 1.5~4.6 9 50.8~101.6 3 变质岩、火成岩 2~5(3) 砾石 10 2~6 9 页岩 2~5(3) 4.1~12.2 2 4.6~9.1 7 101.6~177.8 6 风化的变质岩、火成岩 3~5(4) 砂 9 6~12 5 灰岩 2~7(6) 12.2~28.5 4 9.1~15.2 5 177.8~254.0 8 薄层状砂岩、灰岩、页岩 5~9(6) 胀缩性粘土 7 12~18 3 砂岩 4~8(6) 28.5~40.7 6 15.2~22.9 3 >254 9 块状砂岩 4~9(6) 砂质壤土 6 >18 1 层状的灰岩、砂岩、页岩 4~8(6) 40.7~81.5 8 22.9~30.5 2 - - 块状灰岩 4~9(6) 壤土 5 - - 含较多粉粒和粘粒的砂砾石 4~8(6) >81.5 10 >30.5 1 - - 砂砾石 6~9(8) 粉质壤土 4 - - 变质岩、火成岩 2~8(4) - - - - - - 玄武岩 2~10(9) 粘质壤土 3 - - 砂砾石 6~9(8) - - - - - - 岩溶发育灰岩 9~10(10) 非胀缩性粘土 1 - - 玄武岩 2~10(9) - - - - - - - - - - - - 岩溶发育灰岩 8~10(10) - - -
[1] Aller, L., Bennett, T., Lehr, H., et al., 1987. DRASTIC: a standardized system for evaluating ground water pollution potential using hydro-geologic settings. In: U.S. Environmental Protection Agency, National Water Well Association, Washington, D.C., 35-66. EPA/600/2-85-018 [2] Awawdeh, M.M., Jaradat, R.A., 2010. Evaluation of aquifers vulnerability to contamination in the Yarmouk River basin, Jordan, based on DRASTIC method. Arabian Journal of Geosciences, 3(3): 273-282. doi: 10.1007/s12517-009-0074-9 [3] Babiker, I.S., Mohamed, A.A.M., Hiyama, T., et al., 2005. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, Central Japan. Science of the Total Environment, 345(1-3): 127-140. doi: 10.1016/j.scitotenv.2004.11.005 [4] Boughriba, M., Barkaoui, A., Zarhloule, Y., et al., 2010. Groundwater vulnerability and risk mapping of the Angad transboundary aquifer using DRASTIC index method in GIS environment. Journal of Geosciences, 3(2): 207-220. doi: 10.1007/s12517-009-0072-y [5] Gustafson, D.I., 1989. Groundwater ubiquity score: a simple method for assessing pesticide leachability. Environmental Toxicology and Chemistry, 8(4): 339-357. doi: 10.1002/etc.5620080411 [6] Harman, W.A., Allan, C.J., Forsythe, R.D., 2001. Assessment of potential groundwater contamination sources in a wellhead protection area. Journal of Environmental Management, 62(3): 271-282. doi: 10.1006/jema.2001.0436 [7] Jiang, J., Dong, D.W., Yang, G.N., et al., 2010. Risk assessment of groundwater pollution of Haidian district of Beijing. Urban Geology, 5(2): 14-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CSDZ201002005.htm [8] Kaufman, M.M., Rogers, D.T., Murray, K.S., et al., 2009. Using soil and contaminant properties to assess the potential for groundwater contamination to the lower Great Lakes, USA. Environ. Geol. , 56(5): 1009-1021. doi: 10.1007/s00254-008-1202-7 [9] Saidi, S., Bouri, S., Dhia, H.B., 2010. Groundwater vulnerability and risk mapping of the Hajeb-Jelma aquifer (Central Tunisia) using a GIS-based DRASTIC model. Environ. Earth Sci. , 59(7): 1579-1588. doi: 10.1007/s12665-009-0143-0 [10] Shen, L.N., Li, G.H., 2010. Groundwater pollution risk mapping method. Environmental Science, 31(4): 918-923 (in Chinese with English abstract). http://europepmc.org/abstract/MED/20527171 [11] 江剑, 董殿伟, 杨冠宁, 等, 2010. 北京市海淀区地下水污染风险性评价. 城市地质, 5(2): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-CSDZ201002005.htm [12] 申利娜, 李广贺, 2010. 地下水污染风险区划方法研究. 环境科学, 31(4): 918-923. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201004014.htm