Evolution of Middle-Low Temperature Carbonate Geothermal System in Taiyuan, Northern China
-
摘要: 针对太原盆地区碳酸盐岩中—低温地热系统与边山岩溶水系统的相互作用关系这一难点问题, 以地质构造分析为背景, 以岩溶水的水化学、同位素组成特征为线索, 重塑了太原盆地区碳酸盐岩中—低温地热系统地质演化过程.获得了如下3方面的认识: (1)该系统经历了自燕山运动以来的5个阶段的地质演化过程.在晚第三纪至早更新世阶段的稳定沉降期, 该系统与边山岩溶水系统开始分离, 并各自演化.(2)该系统的岩溶作用来自于2个方面: ①中更新世晚期-晚更新世早期的大气降雨沿汾河等断裂带下渗, 经与石炭—二叠煤系地层中的金属硫化物作用, 形成富含硫酸的地下水, 补给碳酸盐岩热储层, 并与其中存留的更古老的岩溶水混合, 促进了碳酸盐岩溶解; ②受中更新世晚期-晚更新世早期盆地基底岩浆的烘烤, 碳酸盐岩发生热解.(3)该系统中的岩溶热水形成于中更新世晚期-晚更新世早期, 由于上覆盖层良好的保温作用而封存至今.其分布范围受地质构造的控制, 东西向分别以东山、西山断裂为界, 南以田庄断裂为界, 北以亲贤地垒北边界为界.Abstract: To study the complicated issue of interactions between carbonate geothermal system with mid-low temperature existing in Taiyuan basin and its surrounding karst system existing in mountains, the geological evolution processes of the carbonate geothermal system were remodeled based on the analysis of geological structure and characterization of hydrochemistry and isotopic compositions of the karst water. We come to the following conclusions: (1) The carbonate geothermal system with mid-low temperature has experienced five stages of geological evolution since Yanshan Movement. and it separated from its surrounding karst system in mountains during the stable sedimentation period of Neogene to the Early Pleistocene, and then they evolved respectively; (2) The karstification of the carbonate geothermal system with mid-low temperature were due to the following two factors: ① rainfall of the late Middle Pleistocene and the early Late Pleistocene infiltrated along the fault zone (e.g. Fenhe fault), reacted with the metal sulfide in C-P coal measure strata and formed the groundwater rich in sulfuric acid. The groundwater was recharged to the carbonated geothermal reservoir and mixed with the older karst water stored in it, which facilitated the dissolution of carbonate rock; ② the pyrolyzation of carbonated rock occurred by the baking of magma from the basin basement in the late Middle Pleistocene and the early Late Pleistocene; (3) The karst water in the geothermal system formed in the late Middle Pleistocene and the early Late Pleistocene, and sealed up to now because of the good insulation of its overlying strata. Mainly controlled by the geological structure, its east-west boundaries were Dongshan fault and Xishan fault respectively and its south-north boundaries were Tianzhuang fault and north boundary of Qinxian horst respectively.
-
Key words:
- Taiyuan basin /
- carbonate /
- geothermal gystem with mid-low temperature /
- evolution /
- hydrogeochemistry /
- isotopes /
- hydrogeology
-
图 1 太原盆地区域地质构造示意(据韩颖等修改,2009)
1.前寒武系;2.寒武-奥陶系;3.石炭-二叠系;4.三叠-侏罗系;5.上第三系-第四系;6.燕山期构造;7.喜马拉雅期构造;8.背向斜;9.正逆断层;10.实侧及推测构造;11.热水点
Fig. 1. Schematic diagram of the regional geological structure of Taiyuan basin
表 1 岩溶水水样信息及其宏量组分分析结果(单位mg/L)
Table 1. Sampling information and analysis results of major components of karst water samples
样品编号 采样位置 井深(m) 水位(m) 层位 水温(℃) pH EC(μs/cm) Ca2+ Mg2+ Na+ K+ HCO3- 游离CO2 Cl- SO42- NO3- F- 水化学类型 RS01 神堂沟 603 783.0 O2 39.0 6.81 2 400 412.11 105.54 25.34 10.20 237.33 41.81 12.38 1366.10 nd 1.26 S-CM RS02 西华苑 2 012 - ∈ 31.5 6.88 1 083 112.78 47.20 28.08 2.14 311.85 28.61 75.57 172.30 nd - HS-CM RS03 沙沟 1 339 787.9 O2 54.0 6.71 2 630 444.90 119.30 38.26 18.48 195.26 - 14.20 1 542.30 1.78 2.16 S-CM RS04 农展馆 1 690 792.2 O2 50.0 6.94 2 200 356.70 107.70 19.22 8.44 237.98 - 8.55 1 462.30 nd 2.20 S-CM RS05 汇锦花园 1 805 - O2 40.0 7.91 2 260 387.08 97.97 15.16 7.27 262.25 72.62 8.46 1 172.70 nd 2.40 S-CM RS06 丽华苑 1 803 794.2 O2 50.0 7.03 3 000 347.58 88.96 15.20 7.37 227.61 52.81 8.51 1 773.00 nd 2.39 S-CM RS07 统计学校 1 168 795.0 O2 39.0 7.09 1 130 151.67 53.81 26.78 1.26 284.13 34.33 13.73 382.95 1.71 1.75 SH-CM RS09 剪子湾 1 351 - O2 33.4 7.05 1630 227.31 75.07 44.22 4.02 243.41 29.49 35.00 739.25 nd 1.82 S-CM RS11 伞儿树 1 250 780.0 O2 33.0 7.27 1 150 157.42 55.53 19.48 1.97 270.45 21.56 12.63 364.00 nd 1.85 SH-CM LS01 梭峪乡 468 - O2 16.9 6.69 451 63.08 25.32 13.09 0.87 225.40 4.95 7.97 101.72 6.45 - HS-CM LS02 晋祠泉井 300 - O2 17.9 7.48 1 077 137.63 43.03 38.43 0.08 256.78 14.96 15.42 341.48 5.15 0.03 SH-CM LS03 孟家井 570 - O2 16.0 7.74 482 54.78 24.10 10.97 0.28 276.53 24.21 5.34 23.52 13.02 0.36 H-CM LS04 三给村 600 - O2 14.0 7.60 551 82.95 24.00 16.92 0.56 237.90 - 26.55 81.28 12.47 0.35 HS-CM 表 2 岩溶水水样微量组分分析结果(单位mg/L)
Table 2. Analysis results of minor components of karst water samples
样品编号 Sr Si Fe As Ag Al B Ba Co Cr Cs Cu Hg Li Mn Mo Ni Pb Sb V Zn RS01 8.27 9.46 4.27 0.22 0.23 11.3 136.0 19.1 0.69 1.31 0.78 1.06 0.028 74.3 83.3 2.60 2.17 0.13 3.17 0.097 13.60 RS02 11.33 7.08 5.20 1.3 0.16 432.0 51.5 121.0 0.89 4.72 0.13 1.51 0.064 19.5 79.5 27.30 1.24 0.40 2.74 0.600 5.75 RS03 9.26 9.99 0.14 - - - - - - - - - - - - - - - - - - RS04 4.87 8.34 0.20 - - - - - - - - - - - - - - - - - - RS05 4.41 8.23 21.14 0.21 0.34 34.8 99.8 29.0 0.37 1.03 0.42 1.03 0.086 43.8 175.0 0.92 1.45 0.28 1.97 0.090 14.30 RS06 5.82 10.52 5.82 0.32 0.29 46.7 108.0 32.2 0.72 1.41 0.51 1.73 0.053 49.7 92.6 1.97 2.53 0.56 5.24 0.150 17.90 RS07 3.25 5.44 0.50 0.13 0.20 21.1 70.8 28.4 1.01 1.10 0.12 0.88 0.041 31.2 12.7 3.77 0.90 0.20 8.54 0.089 11.00 RS09 6.26 6.69 2.81 0.28 0.18 92.1 100.0 35.8 1.42 1.24 0.26 2.11 0.047 56.8 19.4 0.45 1.21 0.14 10.90 0.160 10.40 RS11 2.85 5.97 1.58 0.27 0.23 84.5 67.9 23.4 0.26 1.16 0.22 1.25 0.055 33.5 11.2 1.43 1.05 0.30 2.07 0.230 13.20 LS01 0.78 4.08 0.09 0.11 0.08 3.5 28.3 24.2 0.31 0.52 0.03 0.45 0.026 10.4 2.3 1.79 0.31 0.07 2.13 0.140 58.80 LS02 2.04 4.11 0.20 2.91 0.20 12.2 87.4 23.2 0.46 1.16 0.04 1.00 0.046 18.9 21.4 3.40 0.85 0.14 2.74 0.200 15.10 LS03 0.61 4.29 0.15 0.71 0.61 111.0 42.4 110.0 0.25 6.28 0.02 3.01 0.072 6.25 0.9 1.37 0.88 0.99 2.56 0.730 27.00 LS04 0.81 4.51 nd 0.44 0.00 - - 59.1 0.43 21.82 - - 0.062 - 0.4 1.62 2.01 0.32 - 1.062 - 表 3 岩溶水水样同位素分析结果
Table 3. Analysis results of isotopes of karst water samples
样品编号 δD(SMOW, ‰) δ18O(SMOW, ‰) T(TU) 14C(pmc) δ13C(PDB, ‰) 87Sr/86Sr 硫酸盐 R R/Ra 4He/20Ne δ34S(CDT, ‰) δ18O(SMOW, ‰) RS01 -78.3 -10.83 <2 - - 0.709 62±0.000 02 26.99 7.72 (1.48±0.10)×10-7 0.11 6.60 RS02 -72.8 -10.42 17.26 25.94±0.03 -33.63 0.709 23±0.000 04 26.86 9.25 - - - RS03 -102.6 -11.78 <2 46.29± - 0.709 17±0.000 02 - - (2.17±0.09)×10-7 0.15 5.60 RS04 -93.3 -10.60 - - - - - - (7.53±0.47)×10-7 0.54 0.67 RS05 -71.2 -10.30 <2 6.59±0.12 -34.17 0.709 23±0.000 03 27.72 6.24 - - - RS06 -73.2 -10.35 12.78 - - 0.709 20±0.000 01 28.19 8.02 (4.30±0.42)×10-7 0.31 1.00 RS07 -71.5 -10.22 15.91 23.99±0.03 -32.98 0.709 41±0.000 02 24.72 8.12 (2.84±0.15)×10-7 0.20 2.20 RS09 -83.4 -11.22 3.92 17.47±0.03 -34.78 0.709 32±0.000 03 25.68 7.25 (2.05±0.08)×10-7 0.15 3.00 RS11 -75.4 -10.43 10.66 - - 0.709 59±0.000 02 24.60 7.63 (3.15±0.17)×10-7 0.23 1.70 LS01 -73.4 -10.00 18.83 16.04±0.06 -31.80 0.710 65±0.000 03 - - (2.96±0.15)×10-7 0.21 2.10 LS02 -72.8 -7.23 5.69 - - 0.710 16±0.000 06 - - - - - LS03 -69.8 -9.93 12.35 41.44±0.02 -29.18 0.710 07±0.000 03 19.73 8.85 (1.36±0.61)×10-6 0.97 0.99 注:表 1~3的数据马瑞(2007)、 Ma et al.(2011) 和Ma et al.(2009) ;R=3He/4He. -
[1] Chen, N., Liang, B., 2011. Influence of temperature of sulphate solution on solubilities of calcite and dolomite. Journal of Hohai University (Natural Sciences), 39(6): 661-664 (in Chinese with English abstract). doi: 10.3876/j.issn.1000-1980.2011.06.013 [2] Coudrain-Ribstein, A., Gouze, P., deMarslily, G., 1998. Temperature-carbon dioxide partial pressure trends in confined aquifers. Chemical Geology, 145: 73-89. doi:10.1016/S0009- 2541(97)00161-7 [3] Han, Y., Yan, S.L., Ma, H.T., et al., 2009. Survey and evaluation of groundwater resources and environmental geological problem in six basins in Shanxi Province. Geological Publishing House, Beijing. [4] Hou, Y.S., 2002. Research on the geothermal resources in border-mount fracture zone in Taiyuan region. Coal Geology of China, 14(4): 38-4 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGMT200204015.htm [5] Lu, Y.R., 1999. Research on the evolutions of karst hydrogeological environments and their engineering impacts. Science Press, Beijing (in Chinese). [6] Ma, R., 2007. Water-rock interaction and genesis of low-medium temperature thermal groundwater in carbonate reservoir. China University of Geosciences, Wuhan (in Chinese with English abstract). [7] Ma, T., Wang, Y.X., Guo, Q.H., 2003. Evolution of groundwater system on three timescales: geological, historical and instrument-recordable. In: Wang, Y.X., Liang, X., eds., Proceeding of international symposium on water resources and the urban environment. China Environmental Sciences Press, Beijing, 103-111. [8] Ma, T., Wang, Y.X., Guo, Q.H., et al., 2005. Karst water system evolution and global environmental changes—a case study in Shanxi Province. China University of Geosciences Press, Wuhan (in Chinese with English abstract). [9] Ma, T., Wang, Y.X., Guo, Q.H., et al., 2009. Hydrochemical and isotopic evidence of origin of thermal karst water at Taiyuan, northern China. Journal of Earth Science, 20(5): 879-889. doi: 10.1007/s12583-009-0074-4 [10] Ma, R., Wang, Y.X., Sun, Z.Y., et al., 2011. Geochemical evolution of groundwater in carbonate aquifers in Taiyuan, northern China. Applied Geochemistry, 26(5): 884-897. doi: 10.1016/j.apgeochem.2011.02.008 [11] Ruan, Z., Yu, B.S., Li, Z.H., et al., 2011. Thermodynamic equilibrium of calcite in strata Environment and its application of burial karst forcasting in Tahe oil field, Tarim basin. Journal of Jilin University (Earth Science Edition), 41(4): 1020-1027 (in Chinese with English abstract). http://www.researchgate.net/publication/287572926_Thermodynamic_equilibrium_of_calcite_in_strata_environment_and_its_application_of_burial_Karst_forcasting_in_Tahe_oil_field_Tarim_basin [12] Sun, L.F., Wang, Y.X., Ma, T., et al., 1997. Evolution of the Niangziguan karst springs in view of travertines environmental record and groundwater flow system development. Earth Science—Journal of China University of Geosciences, 22(6): 648-651 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX706.018.htm [13] Yan, S.L., Wang, R.F., Gan, Y.Q., 2003. Geochemistry of thermal groundwaters at Shentanggou, Taiyuan, China. In: Wang, Y., ed., Proceeding of the international symposium on water resources and the urban environment. China Environmental Science Press, Beijing, 137. [14] Yan, Z.W., 2008. Influences of SO42- on the solubility of calcite and dolomite. Carsologica Sinica, 27(1): 24-31 (in Chinese with English abstract). http://www.researchgate.net/publication/313741767_Influences_of_SO42-on_the_Solubility_of_Calcite_and_Dolomite [15] Yan, Z.W., Liu, H.L., Zhang, Z.W., 2009. Influences of temperature and CO2 on the solubility of calcite and dolomite. Carsologica Sinica, 28(1): 7-11 (in Chinese with English abstract). http://www.researchgate.net/publication/312438200_Influences_of_temperature_and_CO2_on_the_solubility_of_calcite_and_dolomite [16] Yan, Z.W., Zhang, Z.W., 2009. The effect of chloride on the solubility of calcite and dolomite. Hydrogeology and Engineering Geology, 1: 113-118 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG200901029.htm [17] Yan, Z.W., Zhang, J.F., Huang, S.J., et al., 2007. Character and origin of eluvial deposits between the copper ore layers at Dongxiang mining area. Carsologica Sinica, 26(2): 126-131 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZGYR200702006.htm [18] Yu, B.S., Lai, X.Y., 2006. Carbonic acid system of groundwater and the solubility of calcite during diagenesis. Acta Sedimentologica Sinica, 24(5): 627-635 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200605001.htm [19] Yuan, D.X., Liu, Z.H., Jiang, Z.C., et al., 2003. Carbon cycle and karst geological environment. Sciences Press, Beijing, 238-239 (in Chinese). [20] 陈楠, 梁冰, 2011. 硫酸盐溶液中温度对方解石和白云石溶解度的影响. 河海大学学报(自然科学版), 39(6): 661-664. doi: 10.3876/j.issn.1000-1980.2011.06.013 [21] 韩颖, 阎世龙, 马汉田, 等, 2009. 山西六大盆地地下水资源及其环境问题调查评价. 北京: 地质出版社. [22] 侯玉新, 2002. 太原边山断裂带地热资源研究. 中国煤田地质, 14(4): 38-41. doi: 10.3969/j.issn.1674-1803.2002.04.016 [23] 卢耀如, 1999. 岩溶水文地质环境演化与工程效应研究. 北京: 科学出版社, 1-157. [24] 马瑞, 2007. 碳酸盐岩热储隐伏型中低温热水的成因与水—岩相互作用研究. 武汉: 中国地质大学. [25] 马腾, 王焰新, 郭清海, 等, 2005. 岩溶水系统演化与全球变化研究——以山西岩溶大泉为例. 武汉: 中国地质大学出版社. [26] 孙连发, 王焰新, 马腾, 等, 1997. 应用泉钙化环境纪录和地下水流动系统探讨娘子关泉群演变历史. 地球科学——中国地质大学学报, 22(6): 648-651. [27] 闫志为, 2008. 硫酸根离子对方解石和白云石溶解度的影响. 中国岩溶, 27(1): 24-31. doi: 10.3969/j.issn.1001-4810.2008.01.005 [28] 闫志为, 刘辉利, 张志卫, 2009. 温度及CO2对方解石、白云石溶解度影响特征分析. 中国岩溶, 28(1): 7-11. doi: 10.3969/j.issn.1001-4810.2009.01.002 [29] 闫志为, 张俊峰, 黄苏锦, 等, 2007. 江西东乡铜矿层间溶蚀残积堆积物的特征及成因. 中国岩溶, 26(2): 126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR200702006.htm [30] 闫志为, 张志卫, 2009. 氯化物对方解石和白云石矿物溶解度的影响. 水文地质工程地质, 1: 113-118. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200901029.htm [31] 于炳松, 赖兴运, 2006. 成岩作用中的地下水碳酸体系与方解石溶解度. 沉积学报, 24(5): 627-635. doi: 10.3969/j.issn.1000-0550.2006.05.002 [32] 阮壮, 于炳松, 李朝晖, 等, 2011. 埋藏条件下方解石热力学平衡及其在塔河油田埋藏岩溶预测中的应用. 吉林大学学报(地球科学版), 41(4): 1020-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201104010.htm [33] 袁道先, 刘再华, 蒋忠诚, 等, 2003. 碳循环与岩溶地质环境. 北京: 科学出版社, 238-239.