Opportunities and Challenges of Water-Rock Interaction Studies
-
摘要: 简要回顾水—岩相互作用研究的历史, 它基本经历了一个从水—岩相互作用, 到水—岩—有机物相互作用, 最后到水—岩—气—有机物—微生物相互作用研究的发展历程.近年来, 除基础地质及与矿产资源有关的课题继续深入外, 地下水环境演化与全球变化、含水系统中微量变价元素的迁移、转化与富集、地下水环境污染治理与修复、废物地质处置与CO2封存等, 已经成为水—岩相互作用领域的研究热点.随着物理、化学、生物等领域中各种新理论和新方法的不断应用, 水—岩相互作用研究面临着新的机遇和挑战, 主要包括: 地下水系统中生物地球化学过程研究、水—岩相互作用中微观机理与宏观地球化学过程的耦合, 以及水—岩相互作用中的同位素分馏及应用等.Abstract: The history of water-rock interaction studies is briefly reviewed and presented in this paper, which basically falls into three stages, namely, studies focused on water-rock interaction, water-rock-organic interaction, and finally water-rock-gas-organic-microorganism interaction. Although studies on basic geology and mineral resources have accomplished great achievements, environmental issues become increasingly important for water-rock interaction studies. Hot topics in this field mainly include groundwater evolution and global change, transport and enrichment of trace redox-sensitive elements in aquifer systems, treatment and remediation of contaminated groundwater environment, waste geologic disposal and CO2 sequestration. Due to continuous applications of new theories and technologies in physics, chemistry and biology, water-rock interaction studies are facing new opportunities and challenges, which mainly include biogeochemical studies of aquifer systems, coupling of microscale mechanisms of water-rock interaction with macroscale geochemical processes, and fractionation of isotopes as well as their applications in water-rock interactions.
-
Key words:
- groundwater /
- geofluids /
- hydrogeology /
- environment /
- hydrogeochemistry
-
图 1 英国东部内陆三叠纪砂岩含水层地下水中Na/Cl、K/Na的摩尔比与水温之间的关系(Edmunds, 2009)
Fig. 1. Na/Cl vs. temperature (a) K/Na vs. temperature (b) in groundwaters from East Midlands aquifer in UK
图 2 石笋截面图(a)、Mn(b)和As(c)含量分布(Zhou et al., 2011)
Fig. 2. Image of stalagmite (a) and its manganese (b) and arsenic (c) concentrations
图 3 孟加拉高砷地下水区SO42- (a)、As、NH4+、Ca2+ (b)随深度的变化(Harvey et al., 2002);匈牙利和罗马利亚的潘诺尼亚盆地地下水As与CH4(c),As与总S(d)之间的关系(其中Ⅰ代表产甲烷地下水;Ⅱ代表硫酸根还原水)(Rowland et al., 2011);密西根富营养的Upper Mystic Lake (UML)中,1997年6月28日As和NO3-浓度随深度的变化(e);1997年11月18日As(Ⅲ)、As(V)和NO3-随深度的变化(f)(Senn and Hemond, 2002)
Fig. 3. Variations of dissolved SO42- (a), As, NH4+ and Ca2+ (b) with depth in Bangladesh (Harvey et al., 2002); Comparison of As (tot) with CH4 (c), S(tot) (d) of waters from the Pannonian Basin (Ⅰ: Methanogenic; Ⅱ: Sulphate-reducing) (Rowland et al., 2011); Observed NO3-, As(Ⅲ), As(V) and As profiles in Upper Mystic Lake (UML) on June 28, 1997 (e) and November 18, 1997 (f) (Senn and Hemond, 2002)
图 4 CO2泄漏100年后Pb浓度(a)和As浓度(b)随离渗漏点距离的变化(MCL为最大污染水平;虚线表示CO2的渗漏速度为7.5×10-5kg/s;实线表示CO2的渗漏速度为6.0×10-4kg/s)(Zheng et al., 2009)
Fig. 4. Comparison of lead (a) and arsenic (b) concentration profile along x at y=0 after 100 years of CO2 intrusion (Solid lines: CO2 intrusion rate of 6×10-4kg/s; dash lines: CO2 intrusion rate of 7.5×10-5kg/s)
图 5 地球表层一些重要的地微生物栖息地(a)及其相应的代谢过程(b)(Newman and Banfield, 2002)
Fig. 5. Important geomicrobial habitats (a) and their metabolisms (b) near the earth surface
图 6 地热系统中微生物与地球化学过程的协同演化(Reysenbach and Shock, 2002)
Fig. 6. Evolutions of microbes and geochemistry in hydrothermal systems
表 1 历史上重要水文地球化学事件(据Edmunds(2009),有改动)
Table 1. Chronology of important events in hydrogeochemistry
时间 水文地球化学事件 公元前475-221 《管子》中《地员》篇记载了从土的颜色、植物的种类等来判断地下水水质 公元前460-377 古希腊希波克拉底引入了硬水和软水的概念 公元23-79 古罗马学者老普林尼观察到地表水和地下水的差异以及水—岩相互作用对水质影响的重要性 1086-1093 沈括所著《梦溪笔谈》记载,利用铜含量高的泉水提取金属铜 1578 李时珍著《本草纲目》中把泉水按成分分成五类:硫磺泉、硃砂泉、矾石泉、雄黄泉、砒石泉 1669 Joseph Glanvill解释了放热反应是地热水的热源 1691 Sir Edmund Halley科学地介绍了水文循环 1800 George Gibbes描述了硅石的溶解度,并把它作为地热温标 1800-1820 发现了许多化学元素存在于地下水中 1849和1853 伦敦霍乱的爆发,开启了饮用水的科学分析 1887 瑞典化学家阿列纽斯发展了离解理论 1893 居里夫人在巴黎发现了镭 1925 地球化学的先驱维尔纳德茨基(Vernadsky)出版了生物圈《The Biosphere》 1935 Dole首次在密西根湖的研究中应用环境同位素(氧) 1950 首期《Geochimica et Cosmochimica Acta》出版 1953 Libby认识到氚在水文学中应用的潜力 1959 John Hem出版了第一版“天然水化学特征的研究与解释” 1962 沈照理等编写的《专门水文地质学下册(水文地球化学部分)》由燃料工业出版社出版,进一步推动了水文地球化学研究在中国的发展 1964 Garrels和Christ出版了“溶液、矿物与平衡” 1970 美国设立了美国环保局(USEPA) 1973 Kharaka和Barnes出版了第一个地下水的地球化学模拟软件(SOLMINEQ) 1974 第1届WRI在捷克召开 1986 首期《Applied Geochemistry》出版 1998 维尔纳德茨基的《生物圈》由Langmuir翻译成英文 2006 欧盟地下水法案出版 2007 第12届WRI会议在昆明召开 表 2 历届WRI国际学术会议的主题
Table 2. Themes of WRI symposium
届(时间) 地点 主题 1(1974) 捷克 天然水的来源;淡水—岩相互作用;地层水;同位素;模型、动力学与实验 2(1977) 法国 3(1980) 加拿大 地层水;矿床;活动的地热系统;水作用下矿物的稳定性;水岩相互作用的环境和工程方面;实验 4(1983) 日本 活动的地热系统;矿水;地层水;同位素;实验和模拟;风化作用 5(1986) 冰岛 矿物-流体界面地球化学;活动的地热系统;变质环境;稳定与放射性同位素;沉积盆地;地球化学模拟;热液矿床;水—岩—有机物反应 6(1989) 英国 质量转移模拟和反应动力学;变质和热液反应;固液界面的地球化学;水岩相互作用——微量组分的源与汇;地球化学循环;能源与天然资源的地球化学 7(1992) 美国 矿物-流体界面地球化学;地球化学模拟;有机地球化学;自然灾害与环境污染;全球过程;地表水和地下水中的氧化还原反应;风化过程与地表水环境;盐湖与蒸发盐矿床;非饱和带环境;地下水环境;稳定与放射性同位素;沉积盆地;地热系统;变质环境;热液矿床;海水—岩石相互作用 8(1995) 俄罗斯 新方法、技术和应用;水岩相互作用动力学;稳定和放射性同位素;有机物和有机-无机相互作用;火山湖的物理化学过程;地表水的水文地球化学;卤水和热水的水文地球化学;地下水的水文地球化学;盆地流体的水文地球化学;陆地热水系统;海洋热水系统;变质环境;普通矿床;金矿;Fe-Mn矿床;地球化学模拟:理论基础和代码研发;地球化学模拟:野外和室内实验中的应用;与矿物和能源有关的环境问题 9(1998) 新西兰 地热流体和气体;矿床;流体与构造;岩浆-水相互作用;变质作用;普通地热;实验与模拟;地下水质量;普通地下水;沉积盆地;海洋钻探项目:地下水;涉及有机物的过程;地表系统;矿物表面;风化作用;海洋;废物储存和处置 10(2001) 意大利 地球化学循环、全球变化和自然灾害;水岩相互作用的模拟;热力学、动力学和实验地球化学;矿物表面和风化作用;地下水环境;沉积盆地;岩浆、变质和成矿过程;火山和地热过程;微量元素的活化;污染和修复:一般问题;污染和修复:矿山环境;废弃物储存与处置;生物地球化学过程与有机物的络合作用;水岩相互作用研究中的稳定和放射性同位素 11(2004) 美国 火山和地热水岩过程和排气;地壳流体-岩石相互作用、质量转移和挥发性物质循环;地下水系统和沉积盆地中的水岩相互作用;CO2和H2S封存;分光和显微技术的进展;放射性核素与矿物和微生物的相互作用;矿物表面的络合作用:实验和理论研究;全时空尺度上的风化作用研究;从分子尺度到全球尺度的地球化学模拟;有机物的反应性;地微生物学:纪念Henry Ehrlich;铁的生物地球化学;水的地球化学和生物地球化学;环境地球化学 12(2007) 中国 岩浆、变质和地热过程;构造作用活跃区的水岩相互作用;深部流体和地热流体;水岩相互作用的热力学和动力学模拟;矿物-水相互作用:从矿物表面到流域;海洋地球化学、盆地水文地质学和沉积地球化学;废物储存、处置和利用、CO2和SO2封存;稳定和放射性同位素、水文地球化学研究的示踪剂;有机地球化学、生物地球化学和地微生物学;地下水和沉积系统中的水岩相互作用过程;地下水质量;喀斯特地球化学;环境地球化学;气-土-水相互作用和包气带中的溶质运移;地质灾害和水岩相互作用;应用环境化学 13(2010) 墨西哥 稳定同位素和放射性同位素以及其他示踪剂的测定和应用;地热系统中的水岩相互作用;成岩、变质和成矿过程中的水;流域中的水岩相互作用;包气带中溶质迁移过程中的相互作用;喀斯特中的水岩相互作用和沉积岩中的孔隙水化学;控制地下水水质的水岩相互作用;环境地球化学;尾矿中的水岩相互作用;污染场地勘察和修复中水岩相互作用的重要性;矿物表面和水-矿物界面过程的刻画;风化作用动力学中矿物表面的作用;水岩相互作用过程的数值模拟进展;CO2封存中水—岩—气相互作用;与水岩相互作用有关的地质灾害;生物地球化学过程中的水岩相互作用和石油的生成 表 3 原位生物修复受单环芳烃污染地下水时所选用的电子受体和微生物(Farhadian et al., 2008)
Table 3. Electron acceptors and microorganisms involved in the degradation of monoaromatic pollutants
污染物* 电子受体 污染物* 微生物 BTEX(汽油) 硫酸根(厌氧) B Pseudomonas aeruginosa BTEX和乙醇 硫酸根、螯合Fe(Ⅲ)和硝酸根(厌氧) BTE, TCE Pseudomonas putida F1 苯、甲苯和MTBE MgO2(好氧) BTEX Rhodococcus rhodochrous;Pseudomonas putida;Cladophialophora sp. strain T1;Pseudomonas putida;Pseudomonas fluorescens;Achromobacter xylosoxidans BTX H2O2(好氧) BTE(m-/p-)X Rhodococcus sp. RR1 and RR2 BTEX(石油) 硝酸根(厌氧) BTE(o-)X Pseudomonas putida Pseudomonas fluorescens BTEX(石油) 硝酸根和硫酸根(厌氧) BTE(o-)X Rhodococcus sp. strain DK17 BTEX(汽油) 硫酸根、Fe(Ⅲ)、硝酸根以及产甲烷环境(厌氧) BTX Geobacteraceae 苯(石油) 硫酸根和Fe(Ⅲ)(厌氧) BT(m-)X Rhodococcus pyridinovorans PYJ-1 BTEX(汽油) 氧气 BT(p-)X Pseudomonas sp. ATCC 55595 BTEX(汽油) 硝酸根和硫酸根(厌氧) T Ralstonia picketii PKO1;Burkholderia cepacia G4;Ralstonia pickettii strain PKO1;Blastochloris sulfoviridis ToP1 BTEX(燃料油) KNO3作为电子受体,磷酸铵作为营养物(厌氧) T(m-/p-)X Pseudomonas putida strain mt-2 *m-X:间二甲苯;o-X:邻二甲苯;p-X:对二甲苯;B:苯;T:甲苯;TCE:三氯乙烯;MTBE:甲基叔丁基醚. -
[1] Beard, B.L., Johnson, C.M., Cox, L., et al., 1999. Iron isotope biosignatures. Science, 285: 1889-1892. doi: 10.1126/science.285.5435.1889 [2] Berg, M., Trang, P.T.K., Stengel, C., et al., 2008. Hydrological and sedimentary controls leading to arsenic contamination of groundwater in the Hanoi area, Vietnam: the impact of iron-arsenic ratios, peat, river bank deposits, and excessive groundwater abstraction. Chemical Geology, 249: 91-112. doi: 10.1016/j.chemgeo.2007.12.007 [3] Blyth, A.R., Frape, S.K., Tullborg, E.L., 2009. A review and comparison of fracture mineral investigations and their application to radioactive waste disposal. Applied Geochemistry, 24: 821-835. doi: 10.1016/j.earscirev.2005.07.003 [4] Brown, G.E. Jr., Foster, A.L., Ostergren, J.D., 1999. Mineral surfaces and bioavailability of heavy metals: a molecular-scale perspective. Proc. Natl. Acad. Sci. 96: 3388-3395. doi: 10.1073/pnas.96.7.3388 [5] Dempster, H.S., Lollar, B.S., Feenstra, S., 1997. Tracing organic contaminants in groundwater: a new methodology using compound-specific isotopic analysis. Environ. Sci. Technol., 31(11): 3193-3197. doi: 10.1021/es9701873 [6] Edmunds, W.M., Bath, A.H., Miles, D.L., 1982. Hydrochemical evolution of the East Midlands Triassic sandstone aquifer, England. Geochimica et Cosmochimica Acta, 46: 2069-2081. doi: 10.1016/0016-7037(82)90186-7 [7] Edmunds, W.M., 1995. Geological indicators in the groundwater environment of rapid environmental changes. In: Chudaev, O.V., ed., Proceedings of the Eighth International Symposium on Water-rock Interaction. Rotterdam, Balkema. [8] Edmunds, W.M., 2009. Geochemistry's vital contribution to solving water resource problems. Applied Geochemistry, 24: 1058-1073. doi: 10.1016/j.apgeochem.2009.02.021 [9] Ellis, A.J., Mahon, W.A.J., 1964. Natural hydrothermal systems and experimental hot-water/rock interactions. Geochimica et Cosmochimica Acta, 28(8): 1323-1357. doi: 10.1016/0016-7037(64)90132-2 [10] Farhadian, M., Vachelard, C., Duchez, D., et al., 2008. In situ bioremediation of monoaromatic pollutants in groundwater: a review. Bioresource Technology, 99: 5296-5308. doi: 10.1016/j.biortech.2007.10.025 [11] Foster, A.L., Brown, G.E. Jr., Tingle, T.N., et al., 1998. Quantitative arsenic speciation in mine tailings using X-ray absorption spectroscopy. American Mineralogist, 83: 553-568. doi: 10.2138/am-1998-5-616 [12] García-Gutiérrez, M., Cormenzana, J.L., Missana, T., et al., 2006. Large-scale laboratory diffusion experiments in clay rocks. Physics and Chemistry of the Earth, 31(10-14): 523-530. doi: 10.1016/j.pce.2006.04.004 [13] Gault, A.G., Polya, D.A., Lythgoe, P.R., et al., 2003. Arsenic speciation in surface waters and sediments in a contaminated waterway: an IC-ICP-MS and XAS based study. Applied Geochemistry, 18: 1387-1397. doi: 10.1016/S0883-2927(03)00058-1 [14] Gaus, I., 2010. Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks. International Journal of Greenhouse Gas Control, 4: 73-89. doi: 10.1016/j.ijggc.2009.09.015 [15] Guo, H.M., Zhang, B., Li, Y., et al., 2011. Hydrogeological and biogeochemical constrains of As mobilization in shallow aquifers from the Hetao basin, Inner Mongolia. Environ. Pollu., 159: 876-883. doi: 10.1016/j.envpol.2010.12.029 [16] Harrington, R.R., Poulson, S.R., Drever, J.I., et al., 1999. Carbon isotope systematics of monoaromatic hydrocarbons: vaporization and adsorption experiments. Org. Geochem., 30(8): 765-775. doi: 10.1016/S0146-6380(99)00059-5 [17] Harvey, C.F., Swartz, C.H., Badruzzaman, A.B.M., et al., 2002. Arsenic mobility and groundwater extraction in Bangladesh. Science, 298: 1602-1606. doi: 10.1126/science.1076978 [18] Helgeson, H.C., 1968. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions. I. Thermodynamic reactions. Geochimica et Cosmochimica Acta, 32: 853-877. doi: 10.1016/0016-7037(68)90100-2 [19] Helgeson, H.C., Garrels, R.M., Mackenzie, F.T., 1969. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions. Ⅱ. Applications. Geochimica et Cosmochimica Acta, 33: 455-481. doi: 10.1016/0016-7037(69)90127-6 [20] Hem, J.D., 1985. Study and interpretation of the chemical characteristics of natural water. US Geol. Surv. Water Supply Paper 2254, third ed. (first ed., 1959; second ed., 1970). University Press of the Pacific. [21] Herbert, Jr. R.B., Schippers, A., 2008. Iron isotope fractionation by biogeochemical processes in mine tailings. Environ. Sci. Technol., 42: 1117-1122. doi: 10.1021/es071616s [22] Hofstetter, T.B., Spain, J.C., Nishino, S.F., et al., 2008. Identifying competing aerobic nitrobenzene biodegradation pathways using compound-specific isotope analysis. Environ. Sci. Technol, 42(13): 4764-4770. doi: 10.1021/es8001053 [23] Hudson-Edwards, K.A., Jamieson, H.E., Charnock, J.M., et al., 2005. Arsenic speciation in waters and sediment of ephemeral floodplain pools, Rios Agrio-Guadiamar, Aznalcollar, Spain. Chemical Geology, 219: 175-192. doi: 10.1016/j.chemgeo.2005.02.001 [24] Islam, F.S., Gault, A.G., Boothman, C., et al., 2004. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 430: 68-71. doi: 10.1038/nature02638 [25] Kharaka, Y.K., Berry, F.A.F., 1974. Influence of geological membranes on the geochemistry of subsurface waters from miocene sediments at kettleman north dome in California. Water Resources Research, 10(2): 313-327. doi: 10.1029/WR010i002p00313 [26] Kharaka, Y.K., Cole, D.R., Hovorka, S.D., et al., 2006. Gas-water-rock interactions in Frio Formation following CO2 injection: implications for the storage of greenhouse gases in sedimentary basins. Geology, 34: 577-580. doi: 10.1130/G22357.1 [27] Kim, E.J., Batchelor, B., 2009. Macroscopic and X-ray photoelectron spectroscopic investigation of interactions of arsenic with synthesized pyrite. Environ. Sci. Technol., 43: 2899-2904. doi: 10.1021/es803114g [28] Kopinke, F.D., Georgi, A., Voskamp, M., et al., 2005. Carbon isotope fractionation of organic contaminants due to retardation on humic substances: implications for natural attenuation studies in aquifers. Environ. Sci. Technol., 39(16): 6052-6062. doi: 10.1021/es040096n [29] Kuder, T., Wilson, J.T., Kaiser, P., et al., 2005. Enrichment of stable carbon and hydrogen isotopes during anaerobic biodegradation of MTBE: microcosm and field evidence. Environ. Sci. Technol., 39(1): 213-220. doi: 10.1021/es040420e [30] Lemieux, J., 2011. Review: the potential impact of underground geological storage of carbon dioxide in deep saline aquifers on shallow groundwater resources. Hydrogeology Journal, 19: 757-778. doi: 10.1007/s10040-011-0715-4 [31] Li, Y., Wang, Y., Deng, A., 2001. Paleoclimate record and paleohydrogeological analysis of travertine from the Niangziguan karst springs, northern China. Science in China (Series E), 44: 114-118. doi: 10.1007/BF02916800 [32] Newman, D.K., Banfield, J.F., 2002. Geomicrobiology: how molecular-scale interactions underpin biogeochemical systems. Science, 296: 1071-1077. doi: 10.1126/science.1010716 [33] Nickson, R., McArthur, J., Burgess, W., et al., 1998. Arsenic poisoning of Bangladesh groundwater. Nature, 395: 338. doi: 10.1038/26387 [34] Parbs, A., Ebert, M., Dahmke, A., 2007. Einfluss der Mineralpräzipitation auf die Funktionalität und Langzeiteffektivität von FeO-Reaktionswänden-Ein Review anhand von 19 FeO-Reaktionswandstandorten. Grundwasser-Zeitschrift der Fachsektion Hydrogeologie, 12: 267-281. doi: 10.1007/s00767-007-0043-8 [35] Ramos, M.A.V., Yan, W., Li, X., et al., 2009. Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure. The Journal of Physical Chemistry C, 113: 14591-14594. doi: 10.1021/jp9051837 [36] Reysenbach, A., Shock, E., 2002. Merging genomes with geochemistry in hydrothermal ecosystems. Science, 296: 1077-1082. doi: 10.1126/science.1072483 [37] Rowland, H.A.L., Gault, A.G., Charnock, J.M., et al., 2005. Preservation and XANES determination of the oxidation state of solid-phase arsenic in shallow sedimentary aquifers in Bengal and Cambodia. Mineralogical Magazine, 69(5): 825-839. doi: 10.1180/0026461056950291 [38] Rowland, H.A.L., Omoregie, E.O., Millot, R., 2011. Geochemistry and arsenic behaviour in groundwater resources of the Pannonian basin (Hungary and Romania). Applied Geochemistry, 26: 1-17. doi: 10.1016/j.apgeochem.2010.10.006 [39] Schmidt, T.C., Zwank, L., Elsner, M., et al., 2004. Compound specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Anal. Bioanal. Chem., 378(2): 283-300. doi: 10.1007/s00216-003-2350-y [40] Senn, D.B., Hemond, H.F., 2002. Nitrate controls on iron and arsenic in an urban lake. Science, 296: 2373-2376. doi: 10.1126/science.1072402 [41] Shen, K., 1975. Brush talks from dream brook (natural science part). Translated by Li, Q. . Science Press, Beijing (in Chinese). [42] Shen, Z.L., 1991. More attention should be paid to water-rock interaction studies. Hydrogeology and Engineering Geology, 18(2): 1 (in Chinese). [43] Shen, Z.L., Liu, G.Y., Yang, C.T., et al., 1982. Hydrogeology. Science Press, Beijing (in Chinese). [44] Shen, Z.L., Wang, Y.X., 2002. Review and outlook of water-rock interaction studies. Earth Science—Journal of China University of Geosciences, 27(2): 127-132 (in Chinese with English abstract). http://www.researchgate.net/publication/296589975_Review_and_outlook_of_water-rock_interaction_studies [45] Staubwasser, M., von Blanckenburg, F., Schoenberg, R., 2006. Iron isotopes in the early marine diagenetic iron cycle. Geology, 34: 629-632. doi: 10.1130/G22647.1 [46] Tokarev, I.V., Zubkov, A.A., Rumynin, V.G., et al., 2009. Assessment of the long-term safety of radioactive waste disposal: 2. Isotopic study of water exchange in a multilayer system. Water Resources, 36: 345-356. doi: 10.1134/S0097807809030105 [47] van Geen, A., 2011. International drilling to recover aquifer sands (IDRAs) and arsenic contaminated groundwater in Asia. Scientific Drilling, 12: 49-52. doi: 10.2204/iodp.sd.12.06.2011 [48] Wang, J., 2008. Geological disposal of high level radio active waste: progress and challenges. China Engineering Science, 10: 58-65 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCKX200803011.htm [49] Wang, J.Y., 1968. Historical data of China geology. Science Press, Beijing (in Chinese). [50] Wang, Y.X., Ma, T., Guo, Q.H., 2005. Study on groundwater and environmental change. Earth Science Frontiers, 12(Special): 14-21 (in Chinese with English abstract). [51] Witherspoon, P., 2002. Geological challenges in radioactive waste isolation—third worldwide review. Lawrence Berkeley National Laboratory, LBNL-49767, Berkeley, USA. [52] Yi, S.P., Ma, H.Y., Zheng, C.M., 2011. Advances in research on disposal of radioactive waste. Acta Geoscientica Sinica, 32: 592-600 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201105014.htm [53] Yu, T.T., Gan, Y.Q., Liu, C.F., et al., 2011. Advances in multidimensional compound-specific stable isotope analysis method for studies of groundwater organic contamination. Hydrogeology and Engineering Geology, 38: 103-109 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG201101023.htm [54] Yuan, D.X., 1995. Karst and global change studies. Advances in Earth Science, 10(5): 471-474 (in Chinese with English abstract). [55] Zhang, R.Q., Liang, X., Jin, M.G., et al., 2011. Fundamentals of hydrogeology(Sixth edition). Geological Publishing House, Beijing (in Chinese). [56] Zheng, L., Apps, J.A., Zhang, Y., et al., 2009. On mobilization of lead and arsenic in groundwater in response to CO2 leakage from deep geological storage. Chemical Geology, 268: 281-297. doi: 10.1016/j.chemgeo.2009.09.007 [57] Zhou, H., Greig, A., You, C., et al., 2011. Arsenic in a speleothem from Central China: stadial-interstadial variations and implications. Environ. Sci. Technol., 45: 1278-1283. doi: 10.1021/es1032103 [58] 沈括, 1975. 梦溪笔谈(自然科学部分). 李群, 注译. 北京: 科学出版社. [59] 沈照理, 刘光亚, 杨成田, 等, 1982. 水文地质学. 北京: 科学出版社. [60] 沈照理, 1991. 应该重视水—岩相互作用的研究. 水文地质工程地质, 18(2): 1. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG199102001.htm [61] 沈照理, 王焰新, 2002. 水—岩相互作用研究的回顾与展望. 地球科学——中国地质大学学报, 27(2): 127-132. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200202002.htm [62] 王驹, 2008. 高放废物地质处置: 进展与挑战. 中国工程科学, 10: 58-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200803011.htm [63] 王嘉荫, 1968. 中国地质史料. 北京: 科学出版社. [64] 王焰新, 马腾, 郭清海, 等, 2005. 地下水与环境变化研究. 地学前缘, 12(特刊): 14-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2005S1002.htm [65] 余婷婷, 甘义群, 刘存富, 等, 2011. 基于单体多维稳定同位素分析的地下水有机污染研究进展. 水文地质工程地质, 38(1): 103-109. doi: 10.3969/j.issn.1000-3665.2011.01.019 [66] 袁道先, 1995. 岩溶与全球变化研究. 地球科学进展, 10(5): 471-474. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ505.013.htm [67] 易树平, 马海毅, 郑春苗, 2011. 放射性废物处置研究进展. 地球学报, 32: 592-600. doi: 10.3975/cagsb.2011.05.09 [68] 张人权, 梁杏, 靳孟贵, 等, 2011. 水文地质学基础(第六版). 北京: 地质出版社.