Carbonation of Mafic-Ultramafic Rocks: A New Approach to Carbon Dioxide Geological Sequestration
-
摘要: CO2地质封存是控制全球CO2净排放量的有效手段.自然界存在大量基性、超基性岩石的碳酸盐风化作用, 与CO2反应生成稳定的碳酸盐矿物.影响基性、超基性岩石与CO2反应速率的因素有温度、压力、pH值、流体流动速率以及与矿物接触的表面积等.矿物在反应过程中放热可以使碳酸盐化体系进入自我加热的良性循环, 同时控制流体的流动速率可以保持最佳温度并使反应速率最大化.蛇绿岩中的橄榄岩、大陆玄武岩和深海玄武岩在地球表层广泛分布, 可贮存大量CO2.目前研究表明此方法在技术上可行, 经济成本上有优势.因此, 基性、超基性岩石具有封存CO2的巨大潜力, 可以作为地质封存CO2的新途径.Abstract: Geological sequestration is an effective way to enhance the net reduction of global CO2 emission. In nature, there is vast amount of carbonation of mafic-ultramafic rocks, reacting with CO2 to produce stable carbonate minerals. Factors that affect carbonation reaction rates of mafic-ultramafic rocks with CO2 include temperature, pressure, pH values, fluid flow rate, and contact surface area, etc.. Exothermic mineral reactions can drive the carbonation system into a self-heating regime. Meanwhile, controlling fluid flow rates can maintain the optimal temperature for reaction rate. Peridotites in ophiolite, continental flood basalt and deep-sea basalt are widespread on the shallow surface of the earth, providing an alternative for CO2 storage. Current research demonstrates that both technology and economic cost are available. Therefore, mafic-ultramafic rocks have huge potential for CO2 sequestration and it is a new approach to CO2 geological sequestration.
-
Key words:
- mafic rocks /
- carbon dioxide /
- geological sequestration /
- petrology /
- lithosphere
-
图 1 大陆玄武岩和蛇绿岩全球分布(据Oelkers et al., 2008;Matter and Kelemen, 2009)
Fig. 1. Global distribution of continental basalt and ophiolite outline
图 2 反应速率与温度、压力、pH值以及流体的流动速率的函数关系
a.各种矿物反应速率与温度的关系, 据O'Connor et al.(2005)、Mckelvy et al.(2006)、Gislason and Oelkers(2003)、Palandri and Kharaka(2004)、Hänchen et al.(2006)和Schaef and McGrail(2009);b.橄榄石在不同压力下反应速率与温度的关系, 相当于25 ℃时, 1×105 Pa的CO2饱和溶液, 据Barnes and O'Neil(1969)和Schaef and McGrail(2009);c.玄武岩中钙离子溶解速率与pH值和温度之间的关系, 据O'Connor et al.(2005);d.橄榄石碳酸盐化过程中流体流动速率对温度的影响, 据Kelemen and Matter(2008)
Fig. 2. Functional relationships between reaction rates, pressures, temperatures, pH values and fluid flow rates
表 1 矿物封存CO2的反应物和产物(据Oelkers et al., 2008)
Table 1. Reactants and resultants of CO2 sequestration reaction
矿物 化学式 矿物质量(t/tC) 生成的碳酸盐矿物 方解石(Calcite) CaCO3 8.34 菱镁矿(Magnasite) MgCO3 7.02 丝钠铝石(Dawsonite) NaAlCO3(OH)2 12.00 菱铁矿(Siderite) FeCO3 9.65 铁白云石(Ankerite) Ca(Fe, Mg)(CO3)2 8.60 具有封存CO2潜力的矿物 硅灰石(Wollastonite) CaSiO3 9.68 镁橄榄石(Forsterite) Mg2SiO4 5.86 蛇纹石(Serpentine) Mg3Si2O5(OH)4 7.69 钙长石(Anorthite) CaAl2Si2O8 23.10 玄武质玻璃(Basaltic glass) Na0.08 K0.008 Fe(II)0.17 Mg0.28
Ca0.26Al0.36 Fe(III)0.02 SiTi0.02 O3.458.76 -
[1] Arnórsson, S., 1989. Deposition of calcium carbonate minerals from geothermal waters-theoretical considerations. Geothermics, 18: 33-39. doi: 10.1016/0375-6505(89)90007-2 [2] Barnes, I., O'Neil, J.R., 1969. The relationship between fluids in some fresh alpine-type ultramafics and possible modern serpentinization, western United States. Bulletin of the Geological Society of America, 80(10): 1947-1960. doi: 10.1130/0016-7606(1969)80[1947:TRBFIS]2.0.CO;2. [3] Benson, S.M., Cole, D.R., 2008. CO2 sequestration in deep sedimentary formations. Elements, 4(5): 325-331. doi: 10.2113/gselements.4.5.325 [4] Dessert, C., Dupré, B., Gaillardet, J., et al., 2003. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chemical Geology, 202: 257-273. doi: 10.1016/j.chemgeo.2002.10.001 [5] Gislason, S.R., Eugster, H.P., 1987. Meteoric water-basalt interactions: II. a field study in N.E. Iceland. Geochimica et Cosmochimica Acta, 51: 2841-2855. doi: 10.1016/0016-7037(87)90162-1 [6] Gislason, S.R., Oelkers, E.H., 2003. Mechanism, rates, and consequences of basaltic glass dissolution: II. an experimental study of the dissolution rates of basaltic glass as a function of pH and temperature. Geochimica et Cosmochimica Acta, 67: 3817-3832. doi: 10.1016/S0016-7037(03)00176-5 [7] Goldberg, D., Kent, V.D., Paul, E.O., 2010. Potential on-shore and off-shore reservoirs for CO2 sequestration in Central Atlantic magmatic province basalts. Proceedings of the National Academy of Sciences of the United States of America, 107(4): 1327-1332. doi: 10.1073/pnas.0913721107 [8] Goldberg, D.S., Takahashi, T., Slagle, A.L., 2008. Carbon dioxide sequestration in deep-sea basalt. Proceedings of the National Academy of Sciences of the United States of America, 105(29): 9920-9925. doi: 10.1073/pnas.0804397105 [9] Hänchen, M., Prigiobbea, V., Stortib, G., et al., 2006. Dissolution kinetics of fosteritic olivine at 90-150 ℃ including effects of the presence of CO2. Geochimica et Cosmochimica Acta, 70: 4403-4416. doi: 10.1016/j.gca.2006.06.1560 [10] Huijgen, W.J., 2003. Carbon dioxide sequestration by mineral carbonation. Energy, ECN-C-03: 1-52. http://www.researchgate.net/publication/40111028_Carbon_Dioxide_Sequestration_by_Mineral_Carbonation [11] Jiang, H.Y., Shen, P.P., Lu, Y., et al., 2009. Research on the calculation of CO2 storage in the reservoir all over the World. Advances in Earth Science, 24(10): 1122-1129 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=31762028 [12] Kelemen, P.B., Matter, J., 2008. In situ carbonation of peridotite for CO2 storage. Proceedings of the National Academy of Sciences of the United States of America, 105(45): 17295-17300. doi: 10.1073/pnas.0805794105 [13] Kelemen, P.B., Matter, J., Streit, E.E., et al., 2011. Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage. Annual Review of Earth and Planetary Sciences, 39: 547-576. doi: 10.1146/annurev-earth-092010-152509 [14] Kelley, D.S., Karson, J.A., Blackman, D.K., et al., 2001. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature, 412(6843): 145-149. doi: 10.1038/35084000 [15] Marini, L., 2007. Geological sequestration of carbon dioxide: thermodynamics, kinetics, and reaction path modeling. Elsevier, Holand. [16] Martin, B., Fyfe, W.S., 1970. Some experimental and theoretical observations on the kinetics of hydration reactions with particular reference to serpentinization. Chemical Geology, 6: 185-202. doi: 10.1016/0009-2541(70)90018-5 [17] Matter, J., Broeckera, W., Stutea, M., et al., 2009. Permanent carbon dioxide storage into basalt: the CarbFix pilot project, Iceland. Energy Procedia, 1: 3641-3646. doi: 10.1016/j.egypro.2009.02.160 [18] Matter, J.M., Kelemen, P., 2009. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nature Geoscience, 2: 837-841. doi: 10.1038/ngeo683 [19] McKelvy, M., Chizmeshya, A., Squires, K., et al., 2006. A novel approach to mineral carbonation: enhancing carbonation while avoiding mineral pretreatment process cost. Arizona State University, doi: 10.2172/895921 [20] Michael, K., Golab, A., Shulakova, V., et al., 2010. Geological storage of CO2 in saline aquifers: a review of the experience from existing storage operations. International Journal of Greenhouse Gas Control, 4: 659-667. doi: 10.1016/j.ijggc.2009.12.011 [21] Neal, C., Stanger, G., 1985. The chemistry of weathering. Springer, Netherlands, 249-276. [22] Oelkers, E.H., Cole, D.R., 2008. Carbon dioxide sequestration: a solution to a global problem. Elements, 4(5): 305-310. doi: 10.2113/gselements.4.5.305 [23] Oelkers, E.H., Gislason, S.R., Matter, J., 2008. Mineral carbonation of CO2. Elements, 4(5): 333-337. doi: 10.2113/gselements.4.5.333 [24] O'Connor, W.K., Dahlin, D.C., Rush, G.E., et al., 2005. Aqueous mineral carbonation: mineral availability, pretreatment, reaction parametrics and process studies. Final Report. In: O'Connor, ed., Department of Energy 2005. Albany Research Center, Albany, 12-18. [25] Palandri, J.L., Kharaka, Y.K., 2004. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. In: Calif, M.P., ed., U.S. geological survey open-file report. U.S. Geological Survery, U.S. Dept. of the Interion. [26] Pang, Z.H., Yang, F.T., Duan, Z.F., 2008. Development prospect of carbon dioxide sequestration techonology. In: Underground Waste Disposal Committe of Chinese Society for Rock Machanics and Engineering, ed., 2nd workshop on underground disposal of waste. Science Press, Dunhuang, Gansu, 479-492 (in Chinese). [27] Pang, Z.H., Yang, F.T., Li, Y, et al., 2010. Integrated CO2 sequestration and geothermal development: saline aquifers in Beitang depression, Tianjin, North China basin. In: Birkle, P., Torres-Alvarado, I.S., eds., Water-rock interactions. Taylor & Francis Group, London. [28] Ruddiman, W.F., 1997. Tectonic uplift and climate change. Plenum, New York. [29] Saar, M.O., Manga, M., 1999. Permeability-porosity relationship in vesicular basalts. Geophysical Research Letters, 26(1): 111-114. doi: 1998GL900256 [30] Schaef, H.T., McGrail, B.P., 2009. Dissolution of Columbia River basalt under mildly acidic conditions as a function of temperature: experimental results relevant to the geological sequestration of carbon dioxide. Applied Geochemistry, 24: 980-987. doi: 10.1016/j.apgeochem.2009.02.025 [31] Scherer, G.W., 1999. Crystallization in pores. Cement and Concrete Research, 29: 1347-1358. doi: 10.1016/S0008-8846(99)00002-2 [32] Seifritz, W., 1990. CO2 disposal by means of silicates. Nature, 345: 486. doi: 10.1038/345486b0 [33] Torp, T.A., Gale, J., 2004. Demonstrating storage of CO2 in geological reservoirs: the saleipner and sacs projects. In: Gale, J., Kaya, Y., eds., Proceedings of the 6th international conference on greenhouse gas control technologies. Pergamon, Armsterdam, 311-316. doi: 10.1016/j.energy.2004.03.104 [34] White, A.F., 2003. Natural weathering rates of silicate minerals. Treatise on Geochemistry, 5: 133-168. doi: 10.1016/B0-08-043751-6/05076-3 [35] Zhang, H.X., Li, X.C., Wei, N., 2010. The major techonology track and analysis about carbon dioxide capture and storage. Advances in Earth Science, 25(3): 335-340 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201003016.htm [36] Zhang, W., Li, Y.L., Zheng, Y., et al., 2008. CO2 storage capacity estimation in geological sequestration: issus and research progress. Advances in Earth Science, 23(10): 1061-1069 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200810009.htm [37] 江怀友, 沈平平, 卢颖, 等, 2009. 世界油气储层二氧化碳埋存量计算研究. 地球科学进展, 24(10): 1122-1129. doi: 10.3321/j.issn:1001-8166.2009.10.006 [38] 庞忠和, 杨峰田, 段忠丰, 2008. 二氧化碳地质封存技术发展现状与展望. 见: 中国岩石力学与工程学会废物地下处置专业委员会, 编, 第二届废物地下处置学术研讨会论文集. 甘肃敦煌: 科学出版社, 479-492. [39] 张鸿翔, 李小春, 魏宁, 2010. 二氧化碳捕获与封存的主要技术环节与问题分析. 地球科学进展, 25(3): 335-340. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201003016.htm [40] 张炜, 李义连, 郑艳, 等, 2008. 二氧化碳地质封存中的储存容量评估. 地球科学进展, 23(10): 1061-1069. doi: 10.3321/j.issn:1001-8166.2008.10.008