New Proxy for Atmospheric Paleo-CO2 Level During Phanerozoic: Carbon Isotope Discrimination of Fossil Liverworts
-
摘要: 在中国已知最好的苔藓植物化石产地之一河北蔚县, 采集了大量中侏罗世的苔藓植物化石, 选取了3种保存较好的数十块苔类植物化石进行实验室分析处理, 测定了它们的碳同位素组成, 并计算出Δ13C, 运用国际学术界古大气CO2浓度的最新研究成果, 即通过地质学、植物学、植物生理学、地球化学和概率统计学的多学科交叉研究, 利用苔藓植物化石有机碳同位素判别这一全新指标和重建古大气二氧化碳的模型——BRYOCARB, 恢复出中侏罗世的古大气CO2浓度约为705(BRYOCARBNP)或566(BRYOCARBP)μmol/mol, 结果表明苔藓植物化石是恢复地质历史时期大气CO2浓度变化的有效新指标.Abstract: This paper summarizes the latest approaches and results of reconstructed paleo-CO2 level for the pre-Quaternary period. With the link and response between the carbon isotope composition of the fossil liverworts and the paleo-CO2 level, the carbon isotope discrimination (Δ13C) of fossil liverwort is introduced as a new proxy for paleo-CO2 level. It is an interdisciplinary research concerning the relevant domains such as geology, botany, phytophysiology, geochemistry, probability and statistics. The theory and process of the new proxy are clarified and its corresponding mathematical model, BRYOCARB, is introduced. Furthermore, in order to test the result of the new method, a case study has been carried out. Three species fossil liverworts of the Middle Jurassic were collected from Yuxian County, Hebei Province, which is one of the best known fossil sites of bryophytes in China. After a series of experiments and analyses, their carbon isotope compositions were measured and then their Δ13C were calculated. With the Δ13C values and some other environmental parameters running in BRYOCARB, the paleo-CO2 level was calculated, which is ~705 (BRYOCARBNP for with no pores liverworts) μmol/mol or ~566 (BRYOCARBP for with pores liverworts) μmol/mol. The results show a good agreement with other proxies and the long term geochemical models, which proves the carbon isotope discrimination of fossil liverwort is an effective proxy.
-
Key words:
- plant fossils /
- carbon isotope discrimination /
- paleo-CO2 level /
- photosynthesis /
- C3 plants /
- stratigraphy
-
图 1 GEOCARB-Ⅲ以及各类指标所获得的对应各个地质历史时期古大气二氧化碳浓度值
GEOCARB-Ⅲ数据根据Berner and Kothavala, 2001;其他各指标数据收集自Royer, 2006
Fig. 1. Reconstructed paleo-CO2 levels from the GEOCARB-Ⅲ and different proxies during the Phanerozoic
图 4 河北蔚县中侏罗世3种苔类植物同位素判别与二氧化碳浓度函数图及其对应的概率密度函数图以及所恢复的古二氧化碳浓度结果平均值在GEOCARBSULF上的投影
a, b, e.对应BRYOCARBNP模型下的函数图像和结果;c, d, f.对应BRYOCARBP模型下的函数图像和结果;e, f.黑色圆点代表利用河北苔藓化石所恢复的二氧化碳浓度, 灰色正方形点为Fletcher et al.(2008)的数据, 3条曲线分别代表Berner的GEOCARBSULF模型在不同火山作用强度情况下的二氧化碳浓度曲线(Berner, 2006; Fletcher et al., 2008)
Fig. 4. Atmospheric CO2 levels from the Middle Jurassic fossil liverworts of Hebei Province
表 1 3种化石苔藓植物对应的各古环境参数及其碳同位素组成和碳同位素判别测定结果
Table 1. Environmental parameters and the carbon isotope composition and discrimination of the three species of fossil liverwort
属种 年代(Ma) δ13Cp*(‰) Δ13C(‰) δ13Ca(‰) 古纬度(°N) 古辐照q(μmol·m-2s-1) 古氧气浓度oi(%) 古气温T(K) Riccardiopsis hsüi 161~175 -25.624±1.33 20.45±1.8 -5.7±0.69 35 221±28 12.6±0.6 299.15±1.0 Metzgerites yuxianensis 161~175 -25.769±1.33 20.60±1.8 -5.7±0.69 35 221±28 12.6±0.6 299.15±1.0 Hepaticites sp. 161~175 -25.412±1.33 20.23±1.8 -5.7±0.69 35 221±28 12.6±0.6 299.15±1.0 注: 星号处所列苔藓植物碳同位素组成值已经过石化作用值校正. 表 2 3种苔藓植物碳同位素判别分别对应BRYOCARBP和BRYOCARBNP模型所恢复的CO2浓度结果及其平均值
Table 2. Reconstructed CO2 levels from BRYOCARBP and BRYOCARBNP and their means of the Δ13C of three species of fossil liverworts
属种 年代(Ma) CO2浓度(BRYOCARBNP)(μmol/mol) CO2浓度(BRYOCARBP)(μmol/mol) Riccardiopsis hsüi 161~175 714.5 579.7 Metzgerites yuxianensis 161~175 727.0 576.3 Hepaticites sp. 161~175 674.2 543.3 平均值 168 705.2 566.4 -
[1] Beerling, D.J., Franks, P.J., 2010. Plant science: the hidden cost of transpiration. Nature, 464(7288): 495-496. doi: 10.1038/464495a [2] Beerling, D.J., Lomax, B.H., Royer, D.L., et al., 2002. An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils. PNAS, 99(12): 7836-7840. doi: 10.1073/pnas.122573099 [3] Beerling, D.J., Royer, D.L., 2002. Reading a CO2 signal from fossil stomata. New Phytologist, 153(3): 387-397. doi: 10.1046/j.0028-646X.2001.00335.x [4] Beerling, D.J., Woodward, F.I., 2001. Vegetation and the terrestrial carbon cycle: modelling the first 400 million years. Cambridge University Press, Cambridge, 135-183. [5] Berner, R.A., 1991. A model for atmospheric CO2 over Phanerozoic time. American Journal of Science, 291(4): 339-376. doi: 10.2475/ajs.291.4.339 [6] Berner, R.A., 1994. GEOCARB Ⅱ: a revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science, 294(1): 56-91. doi: 10.2475/ajs.294.1.56 [7] Berner, R.A., 2006. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochimca et Cosmochimica Acta, 70(23): 5653-5664. doi: 10.1016/j.gca.2005.11.032 [8] Berner, R.A., Kothavala, Z., 2001. Geocarb Ⅲ: a revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science, 301(2): 182-204. doi: 10.2475/ajs.301.2.182 [9] Breecker, D.O., Sharp, Z.D., McFadden, L.D., 2010. Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted for A.D. 2100. PNAS, 107(2): 576-580. doi: 10.1073/pnas.0902323106 [10] Brooks, A., Farquhar, G.D., 1985. Effect of temperature on the CO2/O2 specificity of ribulose-1, 5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light-estimates from gas-exchange measurements on spinach. Planta, 165(3): 397-406. doi: 10.1007/BF00392238 [11] Cerling, T.E., 1991. Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosls. American Journal Science, 291(4): 377-400. doi: 10.2475/ajs.291.4.377 [12] Ekart, D.D., Cerling, T.E., Möntanez, I.P., et al., 1999. A 400 million years carbon isotope record of pedogenic carbonate: implications for paleoatmospheric carbon dioxide. American Journal of Science, 299(10): 805-827. doi: 10.2475/ajs.299.10.805 [13] Farquhar, G.D., Caemmerer, S., Berry, J.A., 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1): 78-90. doi: 10.1007/BF00386231 [14] Farquhar, G.D., O'Leary, M.H., Berry, J.A., 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 9(2): 121-137. doi. org/10.1071/PP9820121 http://pdf.eurekamag.com/000/000942364.pdf [15] Fletcher, B.J., Beerling, D.J., Brentnall, S.J., et al., 2005. Fossil bryophytes as recorders of ancient CO2 levels: experimental evidence and a Cretaceous case study. Global Biogeochemical Cycles, 19(3): 1-13. doi: 10.1029/2005GB002495,2005 [16] Fletcher, B.J., Beerling, D.J., Chaloner, W.G., 2004. Stable carbon isotopes and the metabolism of the terrestrial Devonian organism Spongiophyton. Geobiology, 2(2): 107-119. doi: 10.1111/j.1472-4677.2004.00026.x [17] Fletcher, B.J., Brentnall, S.J., Anderson, C.W., et al., 2008. Atmospheric carbon dioxide linked with Mesozoic and Early Cenozoic climate change. Nature Geoscience, 1(1): 43-48. doi: 10.1038/ngeo.2007.29 [18] Fletcher, B.J., Brentnall, S.J., Quick, W.P., et al., 2006. BRYOCARB: a process-based model of thallose liverwort carbon isotope fractionation in response to CO2, O2, light and temperature. Geochimica et Cosmochimica Acta, 70(23): 5676-5691. doi: 10.1016/j.gca.2006.01.031 [19] Freeman, K.H., Hayes, J.M., 1992. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Global Biogeochemical Cycles, 6(2): 185-198. doi: 10.1029/92GB00190 [20] Friedli, H., Lötscher, H., Oeschger, H., et al., 1986. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature, 324: 237 - 238. doi: 10.1038/324237a0 [21] Harley, P.C., Thomas, R.B., Reynolds, J.F., et al., 1992. Modelling photosynthesis of cotton grown in elevated CO2. Plant, Cell & Environment, 15(3): 271-282. doi: 10.1111/j.1365-3040.1992.tb00974.x [22] Hernick, L.V., Landing, E., Bartowski, K.E., 2008. Earth's oldest liverworts: metzgeriothallus sharonae sp. nov. from the Middle Devonian (Givetian) of eastern New York, USA. Review of Palaeobotany and Palynology, 148(2-4): 154-162. doi: 10.1016/j.revpalbo.2007.09.002 [23] Katz, M.E., Wright, J.D., Miller, K.G., et al., 2005. Biological overprint of the geological carbon cycle. Marine Geology, 217(3-4): 323-338. doi: 10.1016/j.margeo.2004.o8.005 [24] Kennedy, M.C., Anderson, C.W., Conti, S., et al., 2006. Case studies in Gaussian process modelling of computer codes. Reliability Engineering & System Safety, 91(10-11): 1301-1309. doi: 10.1016/j.ress.2005.11.028 [25] Lin, Z.C., Yan, D.F., Sun, B.N., et al., 2010. Discovery of fossil Marchantiolites blairmorensis (liverwort) from the Lower Cretaceous of Qitaihe area, Heilongjiang Province, Northest China and its geologcial significance. Journal of Lanzhou University (Natural Sciences), 46(4): 1-6 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-LDZK201004003.htm [26] McElwain, J.C., Chaloner, W.G., 1995. Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Palaeozoic. Annals of Botany, 76(4): 389-395. doi: 10.1006/anbo.1995.1112 [27] Mitchell, P.L., 1992. Growth stages and microclimate in coppice and high forest. Chapman & Hall, London, 31-51. [28] Pagani, M., Arthur, M.A., Freeman, K.H., 1999. Miocene evolution of atmospheric carbon dioxide. Paleoceanography, 14(3): 273-292. doi: 10.1029/1999PA900006 [29] Pearson, P.N., Palmer, M.R., 2000. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 406(6797): 695-699. doi: 10.1038/35021000 [30] Proctor, M.C.F., 1982. Physiological ecology: water relations, light and temperature responses, carbon balance. In: Smith, A.J.E., ed., Bryophyte ecology. Chapman and Hall, London, UK, 333-381. [31] Retallack, G.J., 2001. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature, 411(6835): 287-290. doi: 10.1038/35077041 [32] Retallack, G.J., 2005. Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols. Geology, 33(4): 333-336. doi: 10.1130/G21263.1 [33] Royer, D.L., 2001. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Review of Palaeobotany Palynology, 114(1-2): 1-28. doi: 10.1016/S0034-6667(00)00074-9 [34] Royer, D.L., 2006. CO2-forced climate thresholds during the Phanerozoic. Geochimica et Cosmochim ica Acta, 70(23): 5665-5675. doi: 10.1016/j.gca2005.11.031 [35] Royer, D.L., Berner, R.A., Beerling, D.J., 2001. Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches. Earth-Science Review, 54(4): 349-392. doi: 10.1016/S0012-8252(00)00042-8 [36] van der Burgh, J., Visscher, H., Dilcher, D.L., et al., 1993. Paleoatmospheric signatures in Neogene fossil leaves. Science, 260(5115): 1788-1790. doi: 10.1126/science.260.5115.1788 [37] Wahlen, M., Allen, D., Deck, B., et al., 1991. Initial measurements of CO2 concentrations (1530 to 1940 AD) in air occluded in the GISP 2 ice core from Central Greenland. Geophysical Research Letters, 18(8): 1457-1460. doi: 10.1029/91GL01724 [38] Wang, Y.D., Wu, X.W., 2007. Records and diversity of the fossil bryophytes in China. Chenia, 9: 61-72. http://www.researchgate.net/publication/283466279_Records_and_diversity_of_the_fossil_bryophytes_in_China [39] Wellman, C.H., 2010. The invasion of the land by plants: when and where?New Phytologist, 188(2): 306-309. doi: 10.1111/j.1469-8137.2010.03471.x [40] Wellman, C.H., Osterloff, P.L., Mohiuddin, U., 2003. Fragments of the earliest land plants. Nature, 425(6955): 282-285. doi: 10.1038/nature01884 [41] Wu, X.W., Li, B.X., 1992. A study of some bryophytes from Middle Jurassic Qiaoerjian Formation in Yunxian district of Hebei, China. Acta Paleontologica Sinica, 31(3): 257-279, 377-382 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX199203000.htm [42] Yang, R.D., Mao, J.R., Zhang, W.H., et al., 2004. Bryophyte-like fossil (Parafunaria sinensis) from Early-Middle Cambrian Kaili Formation in Guizhou Province, China. Acta Botanica Sinica, 46(2): 180-185. http://www.cqvip.com/Main/Detail.aspx?id=9629967 [43] Yang, Z.Y., Ma, X.H., Huang, B.C., et al., 1998. Apparent polar wander path and tectonic movement of the North China block in Phanerozoic. Science in China (Ser. D), 41(Suppl. 2): 51-65. doi: 10.1007/BF02984513.0 [44] Yapp, C.J., Poths, H., 1992. Ancient atmospheric CO2 pressures interred from natural goethites. Nature, 355(6358): 342-344. doi: 10.1038/355342a0 [45] Zhang, L.S., Zhang, S.S., Yuan, D.X., et al., 2009. The Stratigraphic division and correlation of Early-Middle Jurassic strata in northwestern Hebei. Geological Review, 55(5): 628-638 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200905004.htm [46] Zhang, S.S., 2009. An introduction to coal-forming plants in Xiahuayuan Formation, Yuxian coalfield, Hebei Province. Coal Geology of China, 21(7): 12-14, 28 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGMT200907008.htm [47] Zhu, R.X., Yang, Z.Y., Ma, X.H., et al., 1998. Paleomagnetic constraints on the tectonic history of the major blocks of China during the Phanerozoic. Science in China (Ser. D), 41(Suppl. 2): 1-19. doi: 10.1007/BF02984508 [48] 林志成, 闫德飞, 孙柏年, 等, 2010. 黑龙江七台河下白垩统苔类化石Marchantiolites blairmorensis的发现及其地质意义. 兰州大学学报(自然科学版), 46(4): 1-6. doi: 10.3969/j.issn.1000-2804.2010.04.001 [49] 吴向午, 厉宝贤, 1992. 河北蔚县中侏罗世苔藓植物. 古生物学报, 31(3): 257-279, 377-382. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX199203000.htm [50] 张路锁, 张树胜, 袁东翔, 等, 2009. 冀西北地区早、中侏罗世地层划分及其区域对比. 地质论评, 55(5): 628-638. doi: 10.3321/j.issn:0371-5736.2009.05.004 [51] 张树胜, 2009. 河北蔚县煤田下花园组成煤植物初探. 中国煤炭地质, 21(7): 12-14, 28. doi: 10.3969/j.issn.1674-1803.2009.07.005