Key Technique and Scheme of Classification and Nomenclature for Deep Sea Sediments
-
摘要: 对地质研究的对象进行科学合理的分类,是地学研究的重要内容之一.为建立科学合理、量化统一、操作简便的深海沉积物分类与命名方案,详细分析国内外深海沉积物分类与命名现状,深刻了解海洋沉积物组成与分布,深入研究深海沉积物的水深、平均粒径和粘土含量3项参数指标,通过分析涂片鉴定粘土、钙质生物、硅质生物这三者的含量、粒度和化学分析之间的差异,建立钙质生物、硅质生物与CaCO3、生物SiO2的量化关系,完成沉降法和激光法粒度分析资料的对比和校正,分析深海沉积物分类与命名的兼容性和可比性.在上述研究成果基础上,自主创新提出深海沉积物分类与命名方案及其关键技术.深海沉积物类型简分法把深海沉积物分为深海粘土、钙质软泥、硅质软泥、粘土-硅质-钙质软泥4类,它能满足一般性海洋地质调查要求,达到基本了解深海沉积物类型的目的,在兼容世界深海沉积物类型现状的同时,充分考虑到混合沉积物的存在.深海沉积物类型细分法在简分法基础上细分了16种沉积物,使分类与命名更加详细和全面,满足海洋地质详细调查研究的要求.深海沉积物分类与命名方案与浅海沉积物分类与命名比较,在图形、类型指标、种类数量、冠字冠名法、混合沉积物表示法、可操作性等方面具有可比性,使浅海到深海的沉积物分类与命名呈渐变和有机联系.Abstract: Scientific classification of the geological objects is one of the most important basic research topics in geology. In this paper, thorough review of current research situation is made to establish the classification and nomenclature of deep sea sediments which unify the quantification and can be easily operated. Researches on various topics were conducted, eg., the composition and distribution of oceanic sediments, the relationship between water depth, average grain size and clay content, the discrepancy of clay, calcareous and siliceous content determination between smear and chemical analysis. The authors establish the quantitative relationship between calcareous and CaCO3, between siliceous and biogenic SiO2. This paper also compares and calibrates sedimentation method and laser method for grain size determination, and discusses generality and comparability of the classification and nomenclature system. Innovative key technique and scheme of classification and nomenclature for deep sea sediments were then put forward. The deep sea sediments are classified as deep sea clay, calcareous ooze, siliceous ooze, and clay-siliceous-calcareous ooze according to the simple classification method. The simple classification satisfies the general requirement of marine geological survey and basic understanding of sediment types. This method considers existing sediments mixture and existing classification methods. The deep sea sediments are further classified into 16 sub-types based on the sophisticated classification method, which therefore gives more detailed and comprehensive descriptions for the deep sea sediments and satisfies the requirement for comprehensive marine investigation. The classification and nomenclature for deep sea sediments are comparable with that for shallow sea sediments on diagram, indices, amount of types, naming methods, representation of mixture sediments and operability. Therefore, the classification and nomenclature for deep sea sediments is designed to be a succession of shallow sea sediments classification.
-
图 3 深海沉积物分类与命名简分法(a)和细分法(b)
Ⅰ.深海粘土;Ⅱ.硅质软泥;Ⅲ.钙质软泥;Ⅳ.粘土-硅质-钙质软泥;Ⅰ1.深海粘土;Ⅰ2.含钙质硅质粘土;Ⅰ3.含硅质钙质粘土;Ⅰ4.含钙质含硅质粘土;Ⅱ1.硅质软泥;Ⅱ2.含粘土钙质硅质软泥;Ⅱ3.含钙质粘土质硅质软泥;Ⅱ4.含粘土含钙质硅质软泥;Ⅲ1.钙质软泥;Ⅲ2.含硅质粘土质钙质软泥;Ⅲ3.含粘土硅质钙质软泥;Ⅲ4.含粘土含硅质钙质软泥;Ⅳ1.粘土-硅质-钙质软泥;Ⅳ2.含粘土-硅质-钙质软泥;Ⅳ3.含硅质-粘土质-钙质软泥;Ⅳ4.含钙质-粘土质-硅质软泥
Fig. 3. Simplified (a) and detailed (b) scheme of classification and nomenclature for deep-sea sediments
表 1 北太平洋LL44-GPC3岩心沉积物组分含量(Kyte et al., 1993)
Table 1. Percents of sediment components in core LL44-GPC3 in the central North Pacific
年代 更新世 上新世 中新世 渐新世 始新世 古新世 新生代 年龄(Ma) 0.00~1.80 1.08~5.10 5.10~23.70 23.70~36.70 36.70~57.80 57.80~66.40 0.00~66.40 沉积物样深度(m) 0.00~3.60 3.60~5.50 5.50~10.00 10.00~13.00 13.00~17.25 17.25~20.60 0.00~20.60 热液物质(%) 0.0 0.2 1.3 4.8 19.1 8.8 5.2 水成物质(%) 1.3 2.7 5.5 8.7 6.1 3.3 4.3 磷酸盐物质(%) 0.0 0.0 0.9 2.5 4.8 6.9 2.2 亚洲大陆硅酸岩质风尘(%) 95.9 94.1 74.3 29.9 16.5 10.3 58.9 北美大陆安山岩质风尘(%) 0.0 0.0 9.2 35.9 38.4 53.9 19.6 硅酸岩质火山物质(%) 0.0 0.0 0.1 9.8 0.4 0.0 1.2 夏威夷玄武岩质火山物质(%) 0.0 0.2 3.7 0.3 0.1 0.0 0.9 生物Si(%) 0.0 0.0 0.4 1.2 6.7 10.6 2.7 盐分(%) 2.8 2.8 4.4 6.9 8.0 6.1 4.9 表 2 南海东部海域表层沉积物组分百分含量对比(%)(激光粒度、化学分析与涂片鉴定)
Table 2. Comparison of component percentages of surface sediment from South China Sea
分析方法 样品数 CaCO3 SiO2 Al2O3 生物SiO2 粘土(非生物组分) 钙质生物 硅质生物 沉积物类型 激光粒度、化学分析 126 4.63 54.67 13.64 9.65 69.29 8.60 22.12 含钙质含硅质粘土(Ⅰ4) 涂片鉴定分析 126 10.88 22.18 66.94 10.88 22.18 含钙质含硅质粘土(Ⅰ4) 注:据张富元等, 2010, 深海沉积物分类与命名研究报告;生物SiO2的百分含量根据式1计算;粘土(非生物组分)是指归一化百分含量. 表 3 南海、太平洋表层沉积物的沉降法和激光法粒度分析结果对比
Table 3. Comparison of laser grain size analysis with pipette analysis of surface sediments from South China Sea and Pacific
海区 粒度分析方法 水深(m) Mz(μm) Md(μm) 砂(%)(2.000~0.063 mm) 粉砂(%)(0.063~0.004 mm) 粘土(%)(<0.004 mm) 南海东部海域 沉降法(n=106) 3 329 4.28 5.79 5.65 42.28 52.07 >2 000 m(n=94) 3 587 3.37 3.99 3.66 42.43 53.91 南海东部海域 激光法(n=106) 3 329 9.99 10.43 9.68 61.21(36.17)* 29.11(54.16)* 东太平洋(金翔龙,1997) 沉降法(n=14) 5 094 2.17 1.94 2.66 23.94 73.40 激光法(n=30) 5 094 9.80 13.92 53.16 32.92 注:标注星号的括号内分别是指36.17%为粉砂粒径校正为0.063~0.010 mm的含量和54.16%为粘土粒径校正为<0.010 mm的含量;Mz为平均粒径;Md为中值粒径;n为样品数. 表 4 深海沉积物的类型、名称和参数指标
Table 4. Types, names and parameter indices of deep-sea sediments
沉积物类型代号 沉积物类型的参数指标(%) 沉积物类型名称 沉积物类型英文名称 沉积物类型名称(张富元等,2006) Ⅰ 硅质生物0~50,钙质生物0~50,粘土50~100 深海粘土 deep-sea clay 深海粘土类 Ⅱ 粘土0~50,钙质生物0~50,硅质生物50~100 硅质软泥 siliceous ooze 硅质软泥类 Ⅲ 粘土0~50,硅质生物0~50,钙质生物50~100 钙质软泥 calcareous ooze 钙质软泥类 Ⅳ 粘土0~50,硅质生物0~50,钙质生物0~50 粘土-硅质- 钙质软泥 clay siliceous calcareous ooze 粘土-硅质- 钙质混合软泥类 Ⅰ1 硅质生物0~25,钙质生物0~25,粘土75~100 深海粘土 deep-sea clay 深海粘土 Ⅰ2 钙质生物0~25,硅质生物25~50,粘土50~75 含钙质硅质粘土 calcareous-bearing siliceous clay 硅质粘土 Ⅰ3 硅质生物0~25,钙质生物25~50,粘土50~75 含硅质钙质粘土 siliceous-bearing calcareous clay 钙质粘土 Ⅰ4 硅质生物0~25,钙质生物0~25,粘土50~75 含钙质含硅质粘土 siliceous-bearing calcareous-bearing clay 硅钙质粘土 Ⅱ1 粘土0~25,钙质生物0~25,硅质生物75~100 硅质软泥 siliceous ooze 硅质软泥 Ⅱ2 粘土0~25,钙质生物25~50,硅质生物50~75 含粘土钙质硅质软泥 clay-bearing calcareous siliceous clay 钙质硅质软泥 Ⅱ3 钙质生物0~25,粘土25~50,硅质生物50~75 含钙质粘土质硅质软泥 calcareous-bearing clayey siliceous clay 粘土质硅质软泥 Ⅱ4 粘土0~25,钙质生物0~25,硅质生物50~75 含粘土含钙质硅质软泥 clay-bearing calcareous- bearing siliceous ooze 粘土质-钙质硅质软泥 Ⅲ1 粘土0~25,硅质生物0~25,钙质生物75~100 钙质软泥 calcareous ooze 钙质软泥 Ⅲ2 硅质生物0~25,粘土25~50,钙质生物50~75 含硅质粘土质钙质软泥 siliceous-bearing clayey calcareous ooze 粘土质钙质软泥 Ⅲ3 粘土0~25,硅质生物25~50,钙质生物50~75 含粘土硅质钙质软泥 clay-bearing siliceous calcareous ooze 硅质钙质软泥 Ⅲ4 粘土0~25,硅质生物0~25,钙质生物50~75 含粘土含硅质钙质软泥 clay-bearing siliceous- bearing calcareous ooze 粘土质-硅质钙质软泥 Ⅳ1 粘土25~50,硅质生物25~50,钙质生物25~50 粘土-硅质- 钙质软泥 clay siliceous calcareous ooze 粘土-硅质- 钙质混合软泥 Ⅳ2 粘土0~25,硅质生物25~50,钙质生物25~50 含粘土-硅质- 钙质软泥 clay-bearing siliceous calcareous ooze 粘土质硅质-钙质混合软泥 Ⅳ3 硅质生物0~25,粘土25~50,钙质生物25~50 含硅质-粘土质- 钙质软泥 siliceous-bearing clayey calcareous ooze 硅质-钙质粘土混合软泥 Ⅳ4 钙质生物0~25,粘土25~50,硅质生物25~50 含钙质-粘土质- 硅质软泥 calcareous-bearing clayey siliceous ooze 钙质硅质-粘土混合软泥 注:张富元等(2006)因当时未建立冠词冠名法,沉积物类型命名不够严谨,沉积物名称中出现"类"、"混合"定义不够明确的字. 表 5 世界海洋沉积物的主要类型和分布面积(%)(王琦和朱而勤,1989)
Table 5. Major types and its distribution areas of sediments in world-wide oceans
沉积物类型 大西洋面积 太平洋面积 印度洋面积 总计 钙质软泥 有孔虫软泥 65.1 36.2 54.3 47.1 翼足类软泥 2.4 0.1 0.6 硅质软泥 硅藻软泥 6.7 10.1 19.9 11.6 放射虫软泥 4.6 0.5 2.6 深海粘土 25.8 49.1 25.3 38.1 大洋面积 23.0 53.4 23.6 100.0 -
[1] Agrawal, Y.C., Riley, J.B., 1984. Optical particle sizing for hydrodynamics based on near forward scattering. Society Photo-Optical Instrumentation Engineers, 20(4): 68-76. doi: 10.1117/12.943290 [2] Bischoff, J.L., Piper, D.Z., 1979. Marine geology and oceanography of the Pacific manganese Nodule Province. Plenum Press, New York and London, 397-436. [3] Boström, K., Joensuu, O., Valdés, S., 1972. Geochemical history of South Atlantic Ocean sediments since Late Cretaceous. Marine Geology, 12: 85-121. doi: 10.1016/0025-3227(72)90023-0 [4] Chen, S.T., Wang, J., Zhu, Z.K., et al., 2004. Comparison of the grain size measured by the laser diffract instrument with that by the hydrometer: a case study of beach silts. Journal of Sediment Research, 3: 64-68 (in Chinese with English abstract). [5] Chen, X.F., Feng, X.L., Liu, D.Y., 2002. Correlaion comparison between laser method and pipette-sieve method of grain size. Journal of Ocean University of Qingdao, 32(4): 608-614 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QDHY200204017.htm [6] Chester, R., 2000. Marine geochemistry (second edition). Blackwell Science Ltd., Oxford, 341-356. [7] Cornillault, J., 1972. Particle size analyzer. Applied Optics, 11: 265-265. doi: 10.1364/AO.11.000265. [8] Dean, W.E., Leinen, M., Stow, D.A.V., 1985. Classification of deep sea fine grained sediments. Journal of Sedimentary research, 55: 250-256. doi: 10.1306/212F868E-2B24-11D7-8648000102C1865D [9] Demaster, D.J., 1981. The supply and acuumulation of silica in the marine environment. Geochim. Cosmochim. Acta, 45: 1715-1732. doi: 10.1016/0016-7037(81)90006-5 [10] Ellis, D.B., 1972. Holocene sediments of the South Atlantic Ocean: the calcite compensation depth and concentration of calcite, opal and quartz (Dissertation). Oregon State University, Corvallis, 1-77. [11] He, G.W., Liang, D.H., Song, C.B., et al., 2005. Determining the distribution boundary of cobalt-rich crusts of guyot by synchronous application of sub-bottom profiling and deep-sea video recording. Earth Science—Journal of China University of Geosciences, 30(4): 509-512 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200504019.htm [12] Honjo, S., Emery, K.O., Yamamoyo, S., 1974. Non-combustible suspended matter in surface waters off eastern Asia. Sedimentology, 21: 555-575. doi: 10.1111/j.1365-3091.1974.tb01790.x [13] Hyeong, K., Yoo, C.M., Kim, J., et al., 2006. Flux and grain size variation of eolian dust as a proxy tool for the paleo-position of the intertropical convergence zone in the Northeast Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology, 241: 214-223. doi: 10.1016/j.palaeo.2006.03.011 [14] Jin, X.L., 1997. Marine geology and deposit features for mineral belt of polymetallic Nodules in eastern Pacific Ocean. Ocean Press China, Beijing, 84-172 (in Chinese). [15] Konert, M., Vandenberghe, J., 1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology, 44: 523-535. doi: 10.1046/j.1365-3091.1997.d01-38.x [16] Kyte, F.T., Leinen, M., Heath, G.R., et al., 1993. Cenozoic sedimentation history of the central North Pacific: inferences from the elemental geochemistry of core LL44-GPC3. Geochimica et Cosmochimica Acta, 57: 1719-1740. doi: 10.1016/0016-7037(93)90109-A [17] Lan, X.H., Zhang, Z.X., Li, R.H., et al., 2006. Comparison of different grain size analysis for sediments in the South Yellow Sea. Marine Geology Letters, 22(10): 5-7 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt200610002 [18] Leinen, M., 1977. A normative calculation technique for determining opal in deep-sea sediments. Geochimica et Cosmochimica Acta, 41: 671-676. doi: 10.1016/0016-7037(77)90304-0 [19] Li, C.Z., 1987. Sediment types and sedimentation of the central South China Sea basin. Donghai Marine Science, 5(1-2): 10-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DHHY1987Z1004.htm [20] Li, X.L., 1997. Marine Geology. Ocean University of Qingdao Press, Qingdao, 251-252 (in Chinese). [21] Mazzullo, J.M., Meyer, A., Kidd, R.B., 1988. New sediment classification scheme for the ocean drilling program. In: Mazzullo, J.M., Graham, A.G., eds., Handbook for shipboard sedimentologists. ODP Technical Notes, Texas A&M University Press, Texas, 8: 45-67. doi: 10.2973/odp.tn.8.1988 [22] McCave, I.N., Bryant, R.J., Cook, H.F., et al., 1986. Evaluation of a laser-diffraction-size analyzer for user with natural sediments. Journal of Sedimentary Research, 56: 561-564. doi: 10.1306/212F89CC-2B24-11D7-8648000102C1865D [23] Meng, Y., Yan, S.Z., Chen, R.H., et al., 2001. Composition analysis of the biogenic and mineral clastics in the surface sediment of the northeastern South China Sea and its paleoenvironmental significance. Marine Geology & Quaternary Geology, 21(3): 17-22 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200103002.htm [24] Pan, J.H., Liu, S.Q., DeCarlo, E., 2002. The effects of marine phospharization on element concentration of cobalt-rich crusts. Acta Geoscientia Sinica, 23(5): 403-408 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200205002.htm [25] Rea, D.K., Leinen, M., Janecek, T.R., 1985. Geologic approach to the long-term history of atmospheric circulation. Science, 227(4688): 721-725. doi: 10.1126/science.227.4688.721 [26] Rotwell, R.G., 1989. Minerals and mineraloids in marine sediments: an optical identification guide. Elsevier Science Publishers Ltd., London and New York. [27] Shepard, F.P., 1954. Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Research, 24(3): 151-158. doi: 10.1306/D4269774-2B26-11D7-8648000102C1865D [28] Standardization Administration of the People's Republic of China, 2007. Specifications for oceanographic survey-Part 8 (marine geology and geophysics survey, GB/T12763.8-2007). Standards Press of China, Beijing (in Chinese). [29] Standardization Administration of the People's Republic of China, 2008. Particle size analysis-laser diffraction methods, Part Ⅰ: General principles(GB/T 19077.1-2008), Standards Press of China, Beijing (in Chinese). [30] State Oceanic Administration, 1975. Specifications for oceanographic survey-part 4 (marine geology survey). Ocean Press China, Beijing, 16-29. [31] Terry, R.D., Chilingar, G.V., 1955. Summary of "concerning some additional aids in studying sedimentary formations" by M.S. Shvetsov. Journal of Sedimentary Petrology, 25(3): 229-234. doi: 10.1306/74D70466-2B21-11D7-8648000102C1865D [32] Tong, C.L., Gao, S., 2008. Comparison between grain size data by laser and pipette-sieve methods for tidal flat sediments on Jiangsu coast. Acta Sedimentologica Sinica, 26(1): 46-53 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200801005.htm [33] Wang, Q., Zhu, E.Q., 1989. Marine sedimentology. Science Press, Beijing (in Chinese). [34] Weaver, C.E., Pollard, L.D., 1973. The chemistry of clay minerals. Elsevier, New York. [35] Weiner, B.B., 1979. Particle and spray sizing using laser diffraction. Society of Photo-Optical Instrumentation Engineers, 170: 53-56. http://proceedings.spiedigitallibrary.org/mobile/proceeding.aspx?articleid=1228055 [36] Weiss, E.L., Frock, H.N., 1976. Rapid analysis of particle size distributions by laser light scattering. Powder Technology, 14: 287-293. doi: 10.1016/0032-5910(76)80077-0 [37] Zender, C.S., Miller, R.L., Tegen, I., 2004. Quantifying mineral dust mass budgets: terminology, constraints and current estimates. EOS, 85(48): 509-512. doi: 10.1029/2004EO480002 [38] Zhang, F.Y., Feng, X.L., Zhang, W.Y., et al., 2011. Comparison and calibration of laser grain size analysis with pipette-sieve method: a solution for the underestimation of the clay fraction of surface sediments from the eastern South China Sea. Acta Sedimentologica Sinica, 29(4): 767-775 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201104019.htm [39] Zhang, F.Y., Li, A.C., Lin, Z.H., et al., 2006. Classification and denomination of deep sea sediments. Oceanologia et Limnologia Sinica, 37(6): 517-523 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_hyyhz200606007.aspx [40] Zhang, F.Y., Zhang, W.Y., Yang, Q.H., 2003. Characteristics of grain size distributions of surface sediments in the eastern South China Sea. Acta Sedimentologica Sinica, 21(3): 452-460 (in Chinese with English abstract). [41] Zhang, F.Y., Zhang, W.Y., Zhang, X.Y., et al., 2010. Indices of classification and nomenclature for deep sea sediment and principal component analysis. Acta Oceanologica Sinica, 32(6): 118-129 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=SEAC201006013&dbcode=CJFD&year=2010&dflag=pdfdown [42] Zhang, F.Y., Zhang, W.Y., Zhu, K.C., et al., 2008. Distribution characteristics of cobalt-rich ferromanganese crust resources on submarine seamounts in the western Pacific. Acta Geologica Sinica, 82: 796-803. doi: 10.1111/j.1755-6724.2008.tb00633.x [43] Zhang, F.Y., Zhang, W.Y., Zhu, K.C., et al., 2011. Resources estimation of Co-rich crust of seamounts in the Pacific. Earth Science—Journal of China University of Geosciences, 36(1): 1-11 (in Chinese with English abstract). http://www.researchgate.net/publication/285957697_Resource_estimation_of_Co-rich_crusts_of_seamounts_in_the_Pacific [44] Zhang, H.S., Zhao, P.D., Chen, S.Y., et al., 2001. Mineralizing characters of cobalt-rich ferromanganese nodule and crust in central Pacific Ocean seamount. Earth Science—Journal of China University of Geosciences, 26(2): 205-209 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200102022.htm [45] Zhang, W.Y., Jin, H.Y., Zhang, F.Y., et al., 2009. Organic carbon distribution in the Yangtze River Estuary-Hangzhou bay and its adjacent sea area. Advances in Earth Science, 24(11): 1202-1209 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200911003.htm [46] Ziegler, C.L., Murray, R.W., Hovan, S.A., et al., 2007. Resolving eolian, volcanogenic, and authigenic components in pelagic sediment from the Pacific Ocean. Earth and Planetary Science Letters, 254: 416-432. doi: 10.1016/j.epsl.2006.11.049 [47] 陈仕涛, 王建, 朱正坤, 等, 2004. 激光衍射法与比重计沉降法所测粒度参数的对比研究——以海滩泥沙为例. 泥沙研究, 3: 64-68. https://www.cnki.com.cn/Article/CJFDTOTAL-NSYJ200403009.htm [48] 陈秀法, 冯秀丽, 刘冬雁, 等, 2002. 激光粒度分析与传统粒度分析方法相关对比. 青岛海洋大学学报, 32(4): 608-614. doi: 10.3969/j.issn.1672-5174.2002.04.013 [49] 国家海洋局, 1975. 海洋调查规范(第四分册)海洋地质调查. 北京: 海洋出版社, 16-29. [50] 何高文, 梁东红, 宋成兵, 等, 2005. 浅地层剖面测量和海底摄像联合应用确定平顶海山富钴结壳分布界线. 地球科学——中国地质大学学报, 30(4): 509-512. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200504019.htm [51] 金翔龙, 1997. 东太平洋多金属结核矿带海洋地质与矿床特征. 北京: 海洋出版社. [52] 蓝先洪, 张志珣, 李日辉, 等, 2006. 南黄海沉积物不同粒度分析结果的对比研究. 海洋地质动态, 22(10): 5-7. doi: 10.3969/j.issn.1009-2722.2006.10.002 [53] 李粹中, 1987. 南海中部沉积物类型和沉积作用特征. 东海海洋, 5(1-2): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DHHY1987Z1004.htm [54] 李学伦, 1997. 海洋地质学. 青岛: 青岛海洋大学出版社, 251-252. [55] 孟翊, 严肃庄, 陈荣华, 等, 2001. 南海东北部表层沉积中生源和矿物碎屑组分分析及其古环境意义. 海洋地质与第四纪地质, 21(3): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200103002.htm [56] 潘家华, 刘淑琴, DeCarlo, E., 2002. 大洋磷酸盐化作用对富钴结壳元素富集的影响. 地球学报, 23(5): 403-408. doi: 10.3321/j.issn:1006-3021.2002.05.003 [57] 仝长亮, 高抒, 2008. 江苏潮滩沉积物激光粒度仪与移液管——筛析分析结果的对比. 沉积学报, 26(1): 46-53. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200801005.htm [58] 王琦, 朱而勤, 1989. 海洋沉积学. 北京: 科学出版社. [59] 张富元, 冯秀丽, 章伟艳, 等, 2011. 南海表层沉积物的沉降法和激光法粒度分析结果对比和校正. 沉积学报, 29(4): 767-775. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201104019.htm [60] 张富元, 李安春, 林振宏, 等, 2006. 深海沉积物分类与命名. 海洋与湖沼, 37(6): 517-523. doi: 10.3321/j.issn:0029-814X.2006.06.007 [61] 张富元, 章伟艳, 杨群慧, 2003. 南海东部海域沉积物粒度分布特征. 沉积学报, 21(3): 452-460. doi: 10.3969/j.issn.1000-0550.2003.03.014 [62] 张富元, 章伟艳, 张霄宇, 等, 2010. 深海沉积物分类与命名的参数指标和主成分分析. 海洋学报, 32(6): 118-129. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201006013.htm [63] 张富元, 章伟艳, 朱克超, 等, 2011. 太平洋海山钴结壳资源量估算. 地球科学——中国地质大学学报, 36(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201101002.htm [64] 张海生, 赵鹏大, 陈守余, 等, 2001. 中太平洋海山多金属结壳的成矿特征. 地球科学——中国地质大学学报, 26(2): 205-209. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200102022.htm [65] 章伟艳, 金海燕, 张富元, 等, 2009. 长江口-杭州湾及其邻近海域不同粒级沉积有机碳分布特征. 地球科学进展, 24(11): 1202-1209. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200911003.htm [66] 中国国家标准化管理委员会, 2007. 海洋调查规范: 第8部分(海洋地质地球物理调查, GB/T 12763.8-2007). 北京: 中国标准出版社. [67] 中国国家标准化管理委员会, 2008. 粒度分析-激光衍射法: 第1部分: 通测(GB/T 19077.1-2008). 北京: 中国标准出版社.