Genesis of Granitic Pegmatites and Enclosed Graphic Texture in the Tonglüshan Fe-Cu (Au) Skarn Deposit: Constraints from K-Feldspar 40Ar/39Ar Dating, Trace-Element Geochemistry, and Fluid Inclusion Systematics
-
摘要: 铜绿山Fe-Cu(Au)矿床是长江中下游铁铜成矿带最重要的矽卡岩型矿床之一,矿床的形成与铜绿山石英闪长岩岩株有关.矿区东南部发育有花岗伟晶岩,其形成时间介于石英闪长岩和矽卡岩之间.花岗伟晶岩主要由钾长石、斜长石和石英组成;由石英和钾长石组成的文象结构非常发育.激光阶段加热40Ar/39Ar定年表明,花岗伟晶岩的侵位时间为136.5±0.7 Ma(2σ),与石英闪长岩的侵位时代和铜绿山矿床的成矿时代完全一致. 铜绿山石英闪长岩与花岗伟晶岩的钾长石具有非常相似的主量元素,平均组成分别为Or81Ab18和Or78Ab21.根据岩相学观察和地球化学分析认为,花岗伟晶岩中的文象结构是在快速冷却体系条件下、钾长石晶体生长边界层的SiO2和Al2O3浓度因生长不平衡发生周期性变化而导致石英和钾长石交替生长形成的.铜绿山石英闪长岩和花岗伟晶岩中钾长石的大离子亲石元素(LILE)含量均较高,但与前者相比,花岗伟晶岩中钾长石的Rb、Pb含量明显增加,Ba、Sr含量显著降低,Li、Cs含量略微降低.大离子亲石元素图解(Rb-Ba、La-Ba、K/Ba-Ba、Rb/Sr-Ba)指示花岗伟晶岩是铜绿山石英闪长岩岩浆晚期高度结晶分异演化的结果.但花岗伟晶岩钾长石中Pb、Li、Ga等元素的变化却与岩浆结晶分异演化趋势相悖,表明流体作用在花岗伟晶岩的形成过程中扮演了重要角色.花岗伟晶岩中的石英发育大量熔融包裹体和高盐度流体包裹体,后者的均一温度为260~435 ℃,进一步证实花岗伟晶岩是从流体-熔体共存体系中结晶的.Abstract: Tonglüshan Fe-Cu (Au) deposit is one of the largest skarn deposits in middle-lower Yangtze River metallogenic belt, which is associated with the Early Cretaceous Yangxin quartz diorite stock. Granitic pegmatites are well developed in the southeast mining area, emplaced in the Yangxin quartz diorite pluton and cut by garnet-diopside skarn. The cross-cutting relationships thus indicate that the granitic pegmatites are temporarily intermediate between the quartz diorite and skarn. Granitic pegmatites consist mainly of K-feldspar, plagioclase, and quartz, with conspicuous graphic textures marked by intergrowths of K-feldspar and quartz. K-feldspar with graphic textures from one granitic pegmatite dike has been successfully dated by the 40Ar/39Ar laser microprobe incremental heating technique, yielding a well-defined plateau age of 136.0±1.0 Ma (2σ), which is interpreted to be the emplacement age of the granitic pegmatite dike. The age constraints indicate that the pegmatites formed coevally with the quartz diorite stock in the mine and related skarn Cu-Au mineralization. In situ laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) provides a wealth of information on the major and trace elements of K-feldspar from granitic pegmatites and quartz diorite. The average bulk compositions of K-feldspar from the pegmatite and quartz diorite are represented by Or81Ab18 and Or78Ab21, respectively. K-feldspar minerals with graphic textures have higher Si and lower Al than those without graphic texture. Textural and geochemical data indicate that graphic textures in the pegmatites resulted from alternating growth of K-feldspar and quartz due to dynamic alteration of the relative concentration of SiO2 and Al2O3 in areas proximal to the outer zone of growing K-feldspar crystals. Both K-feldspars from quartz diorite and granitic pegmatite are enriched in large-ion lithophile elements (LILE), but the pegmatite contains more abundant Rb and Pb and lesser amounts of Ba, Sr, Li, and Cs. In the Rb-Ba, La-Ba, K/Ba-Ba, and Rb/Sr-Ba diagrams, samples of the pegmatite and quartz diorite display a trend predicted by the Rayleigh factional crystallization, indicating that the granitic pegmatite was generated by strong fractional crystallization of quartz dioritic magma. However, Pb, Li, and Ga deviate obviously from the trend of fractional crystallization, indicating these elements may have been complexed by a fluid phase. Abundance of melt and fluid inclusions in quartz minerals from the granitic pegmatites demonstrates that the pegmatite formed from melt and fluid coexisting system. This study provides a better understanding of the formation of pegmatites, exsolution of ore fluids from evolving magmas, and hydrothermal mineralization.
-
Key words:
- granitic pegmatite /
- graphic texture /
- 40Ar/39Ar dating /
- Tonglüshan /
- trace elements /
- inclusions /
- fractional crystallization /
- ore deposit geology
-
图 1 铜绿山矽卡岩型Fe-Cu (Au)矿床地质图(据余元昌等,1985)
Fig. 1. Geological map of the Tonglüshan Fe-Cu (Au) skarn deposit
图 3 花岗伟晶岩的典型矿物组成和结构特征
a.花岗伟晶岩岩脉中心钾长石(Kf)与斜长石(Pl)共生,文象结构不发育;b.磷灰石(Ap)呈针状分布于石英(Qz)中;c-d.花岗伟晶岩的文象结构,石英呈箭头状或菱形与钾长石共生;e.文象结构中石英呈叶片状和条带状形态;f.文象结构中钾长石颗粒间石英分布情况及各自的消光位.虚线为颗粒界限;短线代表钾长石的解理方向;Kf1和Kf2为不同消光位的钾长石
Fig. 3. Transmitted-light photomicrographs and sketch showing the mineralogy and texture of pegmatite
图 8 铜绿山石英闪长岩与花岗伟晶岩中钾长石的微量元素二元图解
h, i.模拟曲线为瑞利结晶分馏模型(Hanson, 1978),分配系数采用KK=3(Kontak and Martin, 1997);Rb, Sr.在钾长石中的分配系数采用Icenhower and London(1996)实验研究结果KRb=0.83、KSr=12,Ba的分配系数采用Icenhower and London(1996)实验结果KBa=20和与Kontak and Martin(1997)模拟采用较小分配系数相当的分配系数KBa=10
Fig. 8. Binary elements and ratio plots for selected trace elements for K-feldspars from the Tonglüshan quartz diorite and pegmatite
表 1 花岗伟晶岩中流体包裹体测试数据
Table 1. Summary of fluid inclusion micro-thermometry from the granitic pegmatites
类型 大小(μm) 气液比(%) Thal(℃) Tsyl(℃) Th(℃) 盐度(%) 三相 20 5 356 272 260 52.5 三相 12 20 400 - 287 47.4 三相 10 20 390 - 267 46.4 三相 8 20 370 - 294 44.3 三相 12 20 390 280 275 53.4 三相 10 15 400 - 270 47.4 三相 20 20 410 - 295 48.5 三相 16 20 435 - 366 51.4 三相 12 20 415 - 314 49.1 富液两相 10 20 - - 340 - 富液两相 10 15 - - 341 - 富液两相 8 15 - - 266 - 富气两相 12 75 - - 340 - 富气两相 10 70 - - 311 - 富气两相 14 75 - - 349 - 注:Thal为NaCl溶化温度;Tsyl为KCL溶化温度;Th为均一温度;盐度计算采用 Sterner et al.(1988) ;"-"表示不含子晶,无测试数据.表 2 铜绿山花岗伟晶岩中具有文象结构钾长石激光阶段加热40Ar/39Ar分析结果
Table 2. 40Ar/39Ar analytical data of graphic K-feldspar from granitic pegmatites, Tonglüshan
Run_ID Laser 40Ar/39Ar 38Ar/39Ar 37Ar/39Ar 36Ar/39Ar 40*Ar/39Ar 40*Ar t ±2σ TLS39 (w) % Ma 4814-01A 0.2 156.80 0.024 9 0.80 0.458 4 20.0 12.73 129.90 8.60 4814-01B 0.3 23.25 0.003 3 0.05 0.009 4 20.5 87.95 132.95 0.94 4814-01C 0.4 21.44 0.003 0 -0.70 0.002 5 20.6 96.25 134.07 0.70 4814-01D 0.6 21.48 0.002 6 0.06 0.001 5 21.0 97.96 136.68 0.56 4814-01E 0.8 21.29 0.003 1 0.11 0.000 7 21.1 99.04 136.92 0.55 4814-01F 1.0 21.31 0.003 4 0.04 0.000 8 21.1 98.94 136.92 0.59 4814-01G 1.2 21.28 0.003 9 0.22 0.001 1 21.0 98.47 136.14 0.59 4814-01H 1.5 21.58 0.002 7 0.16 0.002 0 21.0 97.25 136.31 0.57 4814-01I 2.0 21.66 0.002 8 0.10 0.002 1 21.0 97.13 136.63 0.49 4814-01J 2.8 21.53 0.002 0 0.05 0.002 0 20.9 97.18 135.91 0.44 4814-01K 3.7 21.75 0.002 6 0.27 0.002 3 21.1 96.89 136.87 0.49 4814-01L 4.5 21.78 0.002 3 0.25 0.002 8 20.9 96.18 136.09 0.60 J值 ±2σ 40Ar 39Ar 38Ar 37Ar 36Ar Moles 0.003 74 9.00×10-6 1.39×10-14 8.89×10-17 2.21×10-18 7.11×10-17 4.08×10-17 0.003 74 9.00×10-6 7.22×10-15 3.10×10-16 1.01×10-18 1.55×10-17 2.91×10-18 0.003 74 9.00×10-6 1.03×10-14 4.81×10-16 1.42×10-18 -3.37×10-16 1.20×10-18 0.003 74 9.00×10-6 2.30×10-14 1.07×10-15 2.81×10-18 6.42×10-17 1.58×10-18 0.003 74 9.00×10-6 2.35×10-14 1.11×10-15 3.38×10-18 1.22×10-16 7.78×10-19 0.003 74 9.00×10-6 1.91×10-14 8.98×10-16 3.02×10-18 3.59×10-17 6.84×10-19 0.003 74 9.00×10-6 1.58×10-14 7.43×10-16 2.88×10-18 1.63×10-16 8.47×10-19 0.003 74 9.00×10-6 2.06×10-14 9.53×10-16 2.55×10-18 1.53×10-16 1.93×10-18 0.003 74 9.00×10-6 3.00×10-14 1.39×10-15 3.86×10-18 1.39×10-16 2.91×10-18 0.003 74 9.00×10-6 4.67×10-14 2.17×10-15 4.27×10-18 9.97×10-17 4.42×10-18 0.003 74 9.00×10-6 4.81×10-14 2.21×10-15 5.72×10-18 5.91×10-16 5.14×10-18 0.003 74 9.00×10-6 2.82×10-14 1.30×10-15 2.94×10-18 3.24×10-16 3.69×10-18 表 3 铜绿山石英闪长岩和花岗伟晶岩中钾长石主微量元素分析结果
Table 3. Major and trace elements analytical data of K-feldspar from quartz diorite and granitic pegmatices, Tonglüshan
编号 SiO2 Al2O3 Na2O K2O CaO Total An Ab Or Fe Li Ga Rb Sr Cs Ba La Ce Pb K/Rb K/Ba Rb/Sr Ba/Rb % 1×10-6 TLS-3-1-1# 65.4 19.6 1.98 12.3 0.07 99.28 0.4 19.6 80.0 2 061.5 7.85 28.8 172 1 361 0.74 1 146 0.54 0.35 13.5 591.7 107.0 0.1 6.67 TLS-3-1-2# 64.7 20.1 1.71 12.4 0.03 98.89 0.2 17.2 82.6 740.0 11.2 55.2 252 899 0.78 7 225 1.19 0.42 9.50 408.5 17.2 0.3 28.63 TLS-3-1-3 65.6 19.5 1.27 13.2 0.05 99.58 0.3 12.7 87.0 1 232.8 6.86 39.9 288 499 0.69 1 010 0.41 0.21 1.75 378.8 130.3 0.6 3.50 TLS-3-1-4 66.9 18.9 0.85 12.9 0.00 99.51 0.0 9.1 90.9 748.0 16.5 31.2 288 647 0.91 2 285 1.02 0.24 3.19 370.3 56.3 0.4 7.93 TLS-3-2-1# 66.3 19.3 2.45 11.2 0.09 99.41 0.5 24.9 74.6 763.4 7.47 38.3 263 642 0.99 2 905 0.80 0.19 4.17 353.0 38.5 0.4 11.04 TLS-3-2-2# 64.6 20.6 2.41 11.7 0.03 99.35 0.1 23.8 76.1 1 824.9 11.8 34.6 270 373 1.22 1 661 0.23 0.036 1.71 360.7 70.5 0.7 6.16 TLS-3-2-3 63.8 20.9 0.89 13.9 0.04 99.50 0.2 8.9 90.9 800.0 4.59 28.0 335 662 1.52 1 834 0.51 0.13 2.46 344.5 75.8 0.5 5.48 TLS-3-2-4 63.3 21.2 1.39 13.4 0.12 99.45 0.6 13.5 85.9 872.9 1.03 30.0 231 766 0.64 2 216 2.32 0.50 4.53 482.5 60.5 0.3 9.61 TLS-3-3-1# 65.8 19.8 3.39 10.3 0.20 99.45 1.1 33.1 65.9 1 001.5 8.52 27.4 231 737 0.94 1 538 0.97 0.34 3.45 368.3 66.7 0.3 6.65 TLS-3-3-2# 65.3 20.1 3.03 10.6 0.30 99.35 1.6 29.8 68.6 1 325.0 8.47 29.4 222 756 0.73 1 423 1.36 0.56 3.62 396.8 74.6 0.3 6.41 TLS-3-3-3 65.0 19.8 1.12 13.6 0.08 99.53 0.4 11.1 88.5 1 104.2 13.1 27.7 295 618 0.72 1 426 1.13 0.22 2.34 381.9 95.2 0.5 4.83 TLS-3-3-4 64.4 20.1 1.23 13.1 0.24 99.07 1.3 12.4 86.3 2 461.0 3.09 29.6 250 820 0.72 1 447 1.30 0.48 3.50 433.2 90.2 0.3 5.79 TLS-4-1* 63.9 21.0 2.51 12.3 0.06 99.73 0.3 23.7 76.0 886.5 4.57 22.1 341 189 1.34 222 2.44 0.57 15.8 298.9 552.7 1.8 0.65 TLS-4-2* 64.3 20.7 2.63 12.0 0.11 99.75 0.6 24.9 74.5 782.1 3.16 20.6 327 212 0.98 138 1.78 0.69 24.9 303.7 866.3 1.5 0.42 TLS-4-3* 64.1 20.7 1.89 13.0 0.05 99.74 0.3 18.1 81.6 916.9 3.09 16.8 335 196 1.54 210 2.08 0.38 13.5 321.7 619.7 1.7 0.63 TLS-4-4* 64.1 20.7 1.80 13.1 0.00 99.82 0.0 17.2 82.8 666.3 4.61 21.8 340 151 1.50 119 1.62 0.28 9.08 320.5 1101.5 2.3 0.35 TLS-4-5 64.4 20.2 1.69 13.4 0.06 99.79 0.3 16.0 83.7 870.0 4.31 17.2 379 140 1.32 14.2 3.01 0.68 15.4 292.7 9410.8 2.7 0.04 TLS-4-6 64.5 20.4 2.46 12.4 0.04 99.78 0.2 23.1 76.7 1 025.5 4.67 18.9 372 24.2 1.28 15.7 2.26 0.43 12.2 277.5 7921.5 15.4 0.04 TLS-4-7 65.0 20.2 3.14 11.3 0.12 99.80 0.6 29.4 70.0 679.9 4.44 21.4 355 45.2 0.78 19.7 3.64 1.26 13.9 265.4 5762.0 7.8 0.06 TLS-4-8 65.0 20.0 2.44 12.3 0.09 99.76 0.5 23.1 76.5 974.2 3.92 20.2 353 66.6 0.80 16.0 3.07 1.17 14.9 289.4 7692.8 5.3 0.05 TLS-4-9 65.6 19.4 1.90 12.9 0.00 99.82 0.0 18.3 81.7 589.6 3.18 18.0 351 236 0.69 176 1.45 0.38 6.20 304.6 733.7 1.5 0.50 TLS-4-10 65.1 19.9 2.26 12.5 0.04 99.78 0.2 21.6 78.2 746.2 4.83 18.8 335 210 0.81 92.9 2.00 0.29 10.7 309.4 1343.6 1.6 0.28 TLS-4-11 64.9 20.0 2.14 12.7 0.03 99.78 0.2 20.3 79.5 740.3 3.47 22.3 381 101 1.49 129 1.39 0.30 11.7 276.5 985.0 3.8 0.34 TLS-4-12 65.2 19.7 2.24 12.5 0.07 99.74 0.4 21.4 78.2 937.4 5.53 22.2 328 169 0.81 158 1.90 0.56 12.5 316.3 789.6 1.9 0.48 注:TLS-3分析点中带#为钾长石核部的化学成分,不带#为边部;TLS-4分析点中带*为不具文象结构钾长石分析结果,不带*为具有文象结构钾长石成分. -
[1] Anovitz, L.M., Blencoe, J.G., 1999. Dry melting of high albite. American Mineralogist, 84(11): 1830-1842. http://www.degruyter.com/view/j/ammin.1999.84.issue-11-12/am-1999-11-1210/am-1999-11-1210.xml [2] Baker, T., Achterberg, E.V., Ryan, C.G., et al., 2004. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit. Geology, 32(2): 117-120. doi: 10.1130/G19950.1 [3] Carstens, H., 1983. Simultaneous crystallization of quartz-feldspar intergrowths from granitic magmas. Geology, 11(6): 339-341. doi: 10.1130/0091-7613(1983)11<339:SCOQIF>2.0.CO;2 [4] Černý, P., Meintzer, R.E., 1988. Fertile granites in the Archean and Proterozoic fields of rare-element pegmatites: crustal environment, geochemistry and petrogenic relationships. In: Taylor, R.P., Strong, D.F., eds., Recent advances in the geology of granite-related mineral deposits. Canadian Institute of Mining and Metallurgy, 39(Special): 170-207. [5] Černý, P., Meintzer, R.E., Anderson, A.J., 1985. Extreme fractionation in rare-element granitic pegmatites; selected examples of data and mechanisms. Canadian Mineralogist, 23: 381-421. http://pubs.geoscienceworld.org/canmin/article-pdf/23/3/381/3420016/381.pdf [6] Chen, J.F., Zhou, T.X., Xing, F.M., et al., 1994. Isotopic geochemistry of copper-bearing rocks from middle-lower area of Yangtze River. In: Chen, H.S., ed., Isotope geochemistry studies. Zhejiang University Press, Hangzhou, 214-229 (in Chinese). [7] Dostal, J., Chatterjee, A.K., 2010. Lead isotope and trace element composition of K-feldspars from peraluminous granitoids of the Late Devonian South Mountain batholith (Nova Scotia, Canada): implications for petrogenesis and tectonic reconstruction. Contributions to Mineralogy and Petrology, 159(4): 563-578. doi: 10.1007/s00410-009-0442-1 [8] Fenn, P.M., 1986. On the origin of graphic granite. American Mineralogist, 71(3-4): 325-330. http://ci.nii.ac.jp/naid/80002931654 [9] Hanson, G.N., 1978. The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth and Planetary Science Letters, 38(1): 26-43. doi: 10.1016/0012-821X(78)90124-3 [10] Harrison, T.M., McDougall, I., 1982. The thermal significance of potassium feldspar K-Ar ages inferred from 40Ar/39Ar age spectrum results. Geochimica et Cosmochimica Acta, 46(10): 1811-1820. doi: 10.1016/0016-7037(82)90120-X [11] Hu, Z.C., Gao, S., Liu, Y.S., et al., 2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry, 23: 1093-1101. doi: 10.1039/B804760J [12] Icenhower, J., London, D., 1996. Experimental partitioning of Rb, Cs, Sr, and Ba between alkali feldspar and peraluminous melt. American Mineralogist, 81(5-6): 719-734. doi: 10.2138/am-1996-5-619 [13] Jahns, R.H., Burnham, C.W., 1969. Experimental studies of pegmatite genesis; l, a model for the derivation and crystallization of granitic pegmatites. Economic Geology, 64(8): 843-864. doi: 10.2113/gsecongeo.64.8.843 [14] Kirkham, R.V., Sinclair, W.D., 1988. Comb quartz layers in felsic intrusions and their relationship to porphyry deposits. In: Taylor, R.P., Strong, D.F., eds., Recent advances in the geology of granite-related mineral deposits. Canadian Institute of Mining and Metallurgy, 39(Special): 50-71. [15] Kontak, D.J., Martin, R.F., 1997. Alkali feldspar in the peraluminous South Mountain batholith, Nova Scotia; trace-element data. Canandian Mineralogist, 35: 959-977. http://pubs.geoscienceworld.org/canmin/article-pdf/35/4/959/3447087/959.pdf [16] Lee, J.K.W., 1995. Multipath diffusion in geochronology. Contributions to Mineralogy and Petrology, 120(1): 60-82. doi: 10.1007/BF00311008 [17] Lentz, D.R., Fowler, A.D., 1992. A dynamic model for quartz-feldspar graphic intergrowths from granitic pegmatites in the southwestern Grenville Province. Canandian Mineralogist, 30: 571-585. http://pubs.geoscienceworld.org/canmin/article-pdf/30/3/571/3420424/571.pdf [18] Li, H.M., Wang, D.H., Guo, B.J., et al., 2008. 40Ar-39Ar age of potash feldspar from the Banchang Ag-Cu-Pb-Zn-(Mo) deposit in Henan and its geological significance. Acta Geoscientica Sinica, 29(2): 154-160 (in Chinese with English abstract). [19] Li, J.W., Deng, X.D., Zhou, M.F., et al., 2010. Laser ablation ICP-MS titanite U-Th-Pb dating of hydrothermal ore deposits: a case study of the Tonglushan Cu-Fe-Au skarn deposit, SE Hubei Province, China. Chemical Geology, 270(1-4): 56-67. doi: 10.1016/j.chemgeo.2009.11.005 [20] Li, J.W., Zhao, X.F., Zhou, M.F., et al., 2009. Late Mesozoic magmatism from the Daye region, eastern China: U/Pb ages, petrogenesis, and geodynamic implications. Contributions to Mineralogy and Petrology, 157(3): 383-409. doi: 10.1007/s00410-008-0341-x [21] Liu, Y., Hu, Z., Gao, S., et al., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257: 34-43. doi: 10.1016/j.chemgeo.2008.08.004 [22] Liu, Y., Hu, Z., Zong, K., et al., 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4 [23] London, D., 2005. Granitic pegmatites: an assessment of current concepts and directions for the future. Lithos, 80(1-4): 281-303. doi: 10.1016/j.lithos.2004.02.009 [24] London, D., Černý, P., Loomis, J., et al., 1990. Phosphorus in alkali feldspars of rare-element granitic pegmatites. Canadian Mineralogist, 28: 771-786. http://www.researchgate.net/publication/285023222_Phosphorus_in_alkali_feldspars_of_rare-element_granitic_pegmatites [25] London, D., Morgan, G.B., Hervig, R.L., 1989. Vapor-undersaturated experiments with Macusani glass +H2O at 200 MPa, and the internal differentiation of granitic pegmatites. Contributions to Mineralogy and Petrology, 102(1): 1-17. doi: 10.1007/BF01160186 [26] Lovera, O.M., Grove, M., Harrison, T.M., 2002. Systematic analysis of K-feldspar 40Ar/39Ar step heating results Ⅱ: relevance of laboratory argon diffusion properties to nature. Geochimica et Cosmochimica Acta, 66(7): 1237-1255. doi: 10.1016/S0016-7037(01)00846-8 [27] Lovera, O.M., Richter, F.M., Harrison, T.M., 1989. The 40Ar/39Ar thermochronometry for slowly cooled samples having a distribution of diffusion domain sizes. Journal of Geophysical Research, 94(B12): 17917-17935. doi: 10.1029/JB094iB12p17917 [28] Mclaren, S., Dunlap, W.J., Powell, R., 2007. Understanding K-feldspar 40Ar/39Ar data: reconciling models, methods and microtextures. Journal of the Geological Society, London, 164(5): 941-944. doi: 10.1144/0016-76492006-180 [29] Neiva, A.M.R., 1995. Distribution of trace elements in feldspars of granitic aplites and pegmatites from Alijo-Sanfins, northern Portugal. Mineralogical Magazine, 59(1): 35-45. http://minmag.geoscienceworld.org/content/59/1/35 [30] Nomade, S., Renne, P.R., Vogel, N., et al., 2005. Alder creek sanidine (ACs-2): a Quaternary 40Ar/39Ar dating standard tied to the Cobb Mountain geomagnetic event. Chemical Geology, 218(3-4): 315-338. doi: 10.1016/j.chemgeo.2005.01.005 [31] Quidelleur, X., Grove, M., Lovera, O.M., et al., 1997. Thermal evolution and slip history of the Renbu Zedong thrust, southeastern Tibet. Journal of Geophysical Research, 102(B2): 2659-2679. doi: 10.1029/96JB02483 [32] Renne, P.R., Sharp, W.D., Deino, A.L., et al., 1997. 40Ar/39Ar dating into the historical realm: calibration against Pliny the Younger. Science, 277(5330): 1279-1280. doi: 10.1126/science.277.5330.1279 [33] Renne, P.R., Swisher, C.C., Deino, A.L., et al., 1998. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology, 145(1-2): 117-152. doi: 10.1016/S0009-2541(97)00159-9 [34] Reynolds, P., Ravenhurst, C., Zentilli, M., et al., 1998. High-precision 40Ar/39Ar dating of two consecutive hydrothermal events in the Chuquicamata porphyry copper system, Chile. Chemical Geology, 148(1-2): 45-60. doi: 10.1016/S0009-2541(97)00129-0 [35] Seclaman, M., Constantinescu, E., 1972. Metasomatic origin of some micrographic intergrowths. American Mineralogist, 57: 932-940. [36] Shu, Q.A., Chen, P.L., Chen, J.R., 1992. Geology of iron-copper deposits in eastern Hubei Province, China. Ministry of Metallurgical Industry Publishing House, Beijing, 160-165 (in Chinese). [37] Simpson, D.R., 1962. Graphic granite from the Ramona pegmatite district, California. American Mineralogist, 47: 1123-1138. http://www.researchgate.net/publication/286199905_Graphic_granite_from_the_Ramona_pegmatite_district_California [38] Steiger, R.H., Jäeger, E., 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36(3): 359-362. doi: 10.1016/0012-821X(77)90060-7 [39] Sterner, S.M., Hall, D.L., Bodnar, R.J., 1988. Synthetic fluid inclusions. V. Solubility relations in the system NaCl-KCl-H2O under vapor-saturated conditions. Geochimica et Cosmochimica Acta, 52(5): 989-1005. doi: 10.1016/0016-7037(88)90254-2 [40] Swisher, C.C., Wang, Y., Wang, X., et al., 1999. Cretaceous age for the feathered dinosaurs of Liaoning, China. Nature, 400: 58-61. doi: 10.1038/21872 [41] Vasconcelos, P.M., 1999. K-Ar and 40Ar/39Ar geochronology of weathering processes. Annual Review of Earth and Planetary Sciences, 27: 183-229. doi: 10.1146/annurev.earth.27.1.183 [42] Warnock, A.C., Zeitler, P.K., 1998. 40Ar/39Ar thermochronometry of K-feldspar from the KTB borehole, Germany. Earth and Planetary Science Letters, 158(1-2): 67-79. doi: 10.1016/S0012-821X(98)00044-2 [43] White, J.C., 2003. Trace-element partitioning between alkali feldspar and peralkalic quartz trachyte to rhyolite magma. Part Ⅱ: empirical equations for calculating trace-element partition coefficients of large-ion lithophile, high field-strength, and rare-earth elements. American Mineralogist, 88(2-3): 330-337. http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsammin&resid=88/2-3/316 [44] Wilson, N.S.F., Zentilli, M., Reynolds, P.H., et al., 2003. Age of mineralization by basinal fluids at the El Soldado manto-type copper deposit, Chile; 40Ar/39Ar geochronology of K-feldspar. Chemical Geology, 197(1-4): 161-176. doi: 10.1016/S0009-2541(02)00350-9 [45] Woodruff, D.P., 1980. The solid-liquid interface. Cambrige University Press, Cambridge, U.K. 192p. [46] Xie, G.Q., Zhao, H.J., Zhao, C.S., et al., 2009. Re-Os dating of molybdenite from Tonglüshan ore district in southeastern Hubei Province, Middle-Lower Yangtze River belt and its geological significance. Mineral Deposits, 28(3): 227-239 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200903002.htm [47] Yu, Y.C., Li, G., Xiao, G.Q., et al., 1985. Geology and hydrothermal alteration of Tonglushan Cu-Fe skarns deposits, Daye, Hubei Province. Xianling: Geological Survey of Edong Press, 218 (in Chinese). [48] Zhai, Y.S., Yao, S.Z., Lin, X.D., et al., 1992. Fe-Cu (Au) Metallogeny of the Middle-Lower Changjiang Region. Geological Publishing House, Beijing, 235 (in Chinese). [49] Zhao, B., Li, Y.S., Zhao, J.S., 1995. The evidence from inclusions for magma-genetic skarn. Geochimica, 24(2): 198-200 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX502.013.htm [50] Zhao, H.J., Mao, J.W., Xiang, J.F., et al., 2010. Mineralogy and Sr-Nd-Pb isotopic composition of quartz diorite in Tonglushan deposit, Hubei Province. Acta Petrologica Sinica, 26(3): 768-784 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201003011.htm [51] 陈江峰, 周泰禧, 邢凤鸣, 等, 1994. 长江中下游成矿带含铜岩体的同位地球化学研究. 见: 陈好寿编, 同位素地球化学研究. 杭州: 浙江大学出版社, 214-219. [52] 李厚民, 王登红, 郭保健, 等, 2008. 河南板厂银多金属矿床钾长石氩-氩年龄及其地质意义. 地球学报, 29(2): 154-160. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200802005.htm [53] 舒全安, 陈培良, 程建荣, 1992. 鄂东铁铜矿产地质. 北京: 冶金工业出版社, 160-165. [54] 谢桂青, 赵海杰, 招财胜, 等, 2009. 鄂东南铜绿山矿田矽卡岩型铜铁金矿床的辉钼矿Re-Os同位素年龄及其地质意义. 矿床地质, 28(3): 227-239. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200903002.htm [55] 余元昌, 李刚, 肖国荃, 等, 1985. 湖北省大冶县铜绿山接触交代铜铁矿床. 咸宁: 鄂东南地质大队, 218. [56] 翟裕生, 姚书振, 林新多, 等, 1992. 长江中下游游区铁铜(金)成矿规律. 北京: 地质出版社, 235. [57] 赵斌, 李院生, 赵劲松, 1995. 岩浆成因夕卡岩的包裹体证据. 地球化学, 24(2): 198-200. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX502.013.htm [58] 赵海杰, 毛景文, 向君峰, 等, 2010. 湖北铜绿山矿床石英闪长岩的矿物学及Sr-Nd-Pb同位素特征. 岩石学报, 26(3): 768-784. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201003011.htm