• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    越流含水层中抽水井附近非达西流两区模型近似解析解

    文章 黄冠华 刘壮添 李健

    文章, 黄冠华, 刘壮添, 李健, 2011. 越流含水层中抽水井附近非达西流两区模型近似解析解. 地球科学, 36(6): 1165-1172. doi: 10.3799/dqkx.2011.123
    引用本文: 文章, 黄冠华, 刘壮添, 李健, 2011. 越流含水层中抽水井附近非达西流两区模型近似解析解. 地球科学, 36(6): 1165-1172. doi: 10.3799/dqkx.2011.123
    WEN Zhang, HUANG Guan-hua, LIU Zhuang-tian, LI Jian, 2011. An Approximate Analytical Solution for Two-Region Non-Darcian Flow Toward a Well in a Leaky Aquifer. Earth Science, 36(6): 1165-1172. doi: 10.3799/dqkx.2011.123
    Citation: WEN Zhang, HUANG Guan-hua, LIU Zhuang-tian, LI Jian, 2011. An Approximate Analytical Solution for Two-Region Non-Darcian Flow Toward a Well in a Leaky Aquifer. Earth Science, 36(6): 1165-1172. doi: 10.3799/dqkx.2011.123

    越流含水层中抽水井附近非达西流两区模型近似解析解

    doi: 10.3799/dqkx.2011.123
    基金项目: 

    国家自然科学基金项目 41002082

    国家自然科学基金项目 50979106

    中央高校基本科研业务费专项资金资助项目 CUG110401

    高等学校博士学科点专项科研基金 20100145120004

    水利部公益性行业科研专项 200901083

    详细信息
      作者简介:

      文章(1982-), 男, 讲师, 博士, 主要从事地下水非达西流动的研究.E-mail: wenzhangcau@gmail.com

    • 中图分类号: P641.2

    An Approximate Analytical Solution for Two-Region Non-Darcian Flow Toward a Well in a Leaky Aquifer

    • 摘要: 构建了越流含水层中抽水井附近非达西流动的两区模型, 即距离抽水井较近的区域为非达西流, 而相对较远区域为达西流, 两区之间的临界半径可根据临界雷诺数确定.采用线性化近似方法和Laplace变换相结合分别得到了非达西流区域和达西流区域的水位降深在拉氏空间下的解析解, 应用数值Laplace逆变换—Stehfest方法得到其在实空间下的水位降深, 并与相应的全达西模型和全非达西模型进行了比较, 结果表明: 在抽水初期不同临界半径情况下非达西流区域的水位降深曲线互相重合, 并与全非达西模型所得到的结果相吻合; 在抽水后期的结果与全非达西流模型存在明显的差异.在抽水初期, 非达西渗透系数kD越大, 非达西流区域和达西流区域的水位降深越大; 在抽水后期, kD越大, 非达西流区域水位降深越小, 而kD的变化对达西流区域的水位降深影响较小.越流补给在非达西流情况下对水位降深的影响与达西流情况下的结果基本类似, 且只存在于抽水后期.考虑井储影响后, 不同kD和越流补给因子BD情况下抽水初期井中的水位降深在双对数坐标表现为直线且相互重合.

       

    • 图  1  越流含水层中抽水井附近两区模型示意

      Fig.  1.  The schematic diagram of the studied system

      图  2  非达西流区域水位降深与Wen et al.(2008a)全非达西流动模型比较

      Fig.  2.  Comparison of the solution in this study with Wen et al. (2008a)

      图  3  不同kD(a)和不同BD(b)非达西流区域水位降深规律

      Fig.  3.  Drawdowns in non-Darcian flow region for different kD values (a) and BD values (b)

      图  4  不同kD(a)和不同BD(b)达西流区域水位降深规律

      Fig.  4.  Drawdowns in Darcian flow region for different kD values (a) and BD values (b)

      图  5  考虑井储影响后不同kD(a)和不同BD(b)井中水位降深曲线

      Fig.  5.  Drawdowns inside the well for different kD values (a) and BD values (b) with wellbore storage

      表  1  无量纲变量

      Table  1.   Dimensionless variables used in this study

      ${r_D} = \frac{r}{m}$ ${r_{wD}} = \frac{{{r_w}}}{m}$ ${r_{cD}} = \frac{{{r_c}}}{m}$
      ${R_{cD}} = \frac{{{R_c}}}{m}$ ${q_D} = - \frac{{4\pi {m^2}}}{Q}q$ ${s_D} = \frac{{4\pi {k_2}m}}{Q}s$
      ${k_D} = \frac{{{k_1}}}{{{k_2}}}{\left[ {\frac{Q}{{4\pi {m^2}}}} \right]^{1 - n}}$ ${t_D} = \frac{{{k_2}t}}{{Sm}}$ ${B_D} = \frac{{B{k_2}}}{{{m^2}}}$
      下载: 导出CSV
    • [1] Camacho, V.R.G., Vásquez, C.M., 1992. Comment on "analytical solution incorporating nonlinear radial flow in confined aquifers" by Zekai Sen. Water Resources Research, 28(12): 3337-3338. doi: 10.1029/92WR01646
      [2] Chang, A.D., Guo, J.Q., Wang, H.S., 2000. The analytical solution of unsteady well flow with two flow regimes. Journal of Hydraulic Engineering, 6: 49-53 (in Chinese with English abstract). doi: 10.1080/09715010.2000.10514679
      [3] Hantush, M.S., Jacob, C.E., 1955. Non-steady radial flow in an infinite leaky aquifer. Transactions, American Geophysical Union, 36(1): 95-100. doi: 10.1029/TR036i001p00095
      [4] Liu, Y.H., Chang, A.D., 2005. Research on unsteady well flow of the specific discharge of the nonlinear regime. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition), 33(8): 113-115 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=20015341
      [5] Liu, Y.H., Chang, A.D., Deng, Q.X., 2005. Drawdown of well flow in the co-existed linear and nonlinear exponents. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition), 33(3): 157-160 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBNY200503026.htm
      [6] Mathias, S.A., Butler, A.P., Zhan, H.B., 2008. Approximate solutions for forchheimer flow to a well. Journal of Hydraulic Engineering, 134(9): 1318-1325. doi: 10.1061/(ASCE)0733-9429(2000)134.9
      [7] Sen, Z., 1987. Non-Darcian flow in fractured rocks with a linear flow pattern. Journal of Hydrology, 92(1-2): 43-57. doi: 10.1016/0022-1694(87)90088-6
      [8] Sen, Z., 1988. Type curves for two-region well flow. Journal of Hydraulic Engineering, 114(12): 1461-1484. doi: 10.1061/(ASCE)0733-9429(1988)114.12
      [9] Sen, Z., 1989. Nonlinear flow toward wells. Journal of Hydraulic Engineering, 115(2): 193-209. doi: 10.1061/(ASCE)0733-9429(1989)115.2(193)
      [10] Sen, Z., 1990. Nonlinear radial flow in confined aquifers toward large-diameter wells. Water Resources Research, 26(5): 1103-1109. doi: 10.1029/WR026i005P01103
      [11] Stehfest, H., Goethe-Univ, J.W., Germany, W., 1970a. Algorithm 368: numerical inversion of Laplace transforms. Communications of the ACM, 13(1): 47-49. doi: 10.1145/361953.361969
      [12] Stehfest, H., Goethe-Univ, J.W., Germany, W., 1970b. Remark on algorithm 368: numerical inversion of Laplace transforms. Communications of the ACM, 13(10): 624-625. doi: 10.1145/355598.362787
      [13] Wang, P.J., 1996. Theory for two-regime well flow in confined aquifers. Journal of Irrigation and Drainage, 15(4): 1-9 (in Chinese with English abstract).
      [14] Wen, Z., Huang, G.H., Zhan, H.B., 2006. Non-Darcian flow in a single confined vertical fracture toward a well. Journal of Hydrology, 330(3-4): 698-708. doi: 10.1016/j.jhydrol.2006.05.001
      [15] Wen, Z., Huang, G.H., Zhan, H.B., 2008a. Non-Darcian flow to a well in an aquifer-aquitard system. Advances in Water Resources, 31(12): 1754-1763. doi: 10.1016/j.advwatres.2008.09.002
      [16] Wen, Z., Huang, G.H., Zhan, H.B., 2008b. An analytical solution for non-Darcian flow in a confined aquifer using the power law function. Advances in Water Resources, 31(1): 44-55.10.1016/j. advwatres. 2007.06.002 doi: 10.1016/j.advwatres.2007.06.002
      [17] Wen, Z., Huang, G.H., Zhan, H.B., et al., 2008c. Two-region non-Darcian flow toward a well in a confined aquifer. Advances in Water Resources, 31(5): 818-827. doi: 10.1016/j.advwatres.2008.01.004
      [18] Wen, Z., Huang, G.H., Li, J., et al., 2009a. A numerical solution of non-Darcian flow toward an extended well in a confined aquifer. Journal of Hydraulic Engineering, 40(4): 398-402 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SLXB200904004.htm
      [19] Wen, Z., Huang, G.H., Li, J., et al., 2009b. A numerical solution for non-Darcian flow toward a well in a leaky aquifer. Chinese Journal of Hydrodynamics, 24(4): 448-454 (in Chinese with English abstract). http://www.researchgate.net/publication/287464153_A_numerical_solution_for_non-Darcian_flow_toward_a_well_in_a_leaky_aquifer
      [20] Wu, Y.S., 2001. Non-darcy displacement of immiscibe fluids in porous media. Water Resources Research, 37(12): 2943-2950. doi: 10.1029/2001WR000389
      [21] Wu, Y.S., 2002. Numerical simulation of single-phase and multiphase non-Darcy flow in porous and fractured reservoirs. Transport in Porous Media, 49(2): 209-240. doi: 10.1023/A:1016018020180
      [22] 常安定, 郭建青, 王洪胜, 2000. 两种流态区域条件下的井流问题的解析解. 水利学报, 6: 49-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200006008.htm
      [23] 刘元会, 常安定, 2005. 非线性渗流区域井流问题渗流速度的分区研究. 西北农林科技大学学报(自然科学版), 33(8): 113-115. https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY200508034.htm
      [24] 刘元会, 常安定, 邓秋霞, 2005. 线性非线性并存区域井流问题的水头降深研究. 西北农林科技大学学报(自然科学版), 33(3): 157-160. doi: 10.3321/j.issn:1671-9387.2005.03.037
      [25] 王鹏举, 1996. 考虑非达西流情况下地下水向集水建筑物运动的非稳定理论的研究. 灌溉排水, 15(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS604.000.htm
      [26] 文章, 黄冠华, 李健, 等, 2009a. 承压含水层中扩展井附近非达西流数值解. 水利学报, 40(4): 398-402. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200904004.htm
      [27] 文章, 黄冠华, 李健, 等, 2009b. 越流含水层中抽水井附近非达西流动模型的数值解. 水动力学研究与进展, 24(4): 448-454. https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200904010.htm
    • 加载中
    图(5) / 表(1)
    计量
    • 文章访问数:  221
    • HTML全文浏览量:  142
    • PDF下载量:  3
    • 被引次数: 0
    出版历程
    • 收稿日期:  2011-05-08
    • 网络出版日期:  2021-11-10
    • 刊出日期:  2011-06-15

    目录

      /

      返回文章
      返回