• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    汶川震中岩浆岩高边坡破坏模式与崩塌机理

    胡新丽 唐辉明 朱丽霞

    胡新丽, 唐辉明, 朱丽霞, 2011. 汶川震中岩浆岩高边坡破坏模式与崩塌机理. 地球科学, 36(6): 1149-1154. doi: 10.3799/dqkx.2011.121
    引用本文: 胡新丽, 唐辉明, 朱丽霞, 2011. 汶川震中岩浆岩高边坡破坏模式与崩塌机理. 地球科学, 36(6): 1149-1154. doi: 10.3799/dqkx.2011.121
    HU Xin-li, TANG Hui-ming, ZHU Li-xia, 2011. Collapse Mode and Mechanism of High Magmatite Rock Slope in Wenchuan Epicentral Area. Earth Science, 36(6): 1149-1154. doi: 10.3799/dqkx.2011.121
    Citation: HU Xin-li, TANG Hui-ming, ZHU Li-xia, 2011. Collapse Mode and Mechanism of High Magmatite Rock Slope in Wenchuan Epicentral Area. Earth Science, 36(6): 1149-1154. doi: 10.3799/dqkx.2011.121

    汶川震中岩浆岩高边坡破坏模式与崩塌机理

    doi: 10.3799/dqkx.2011.121
    基金项目: 

    国家自然科学基金项目 40872175

    国家重点基础研究发展计划"973"课题 2011CB710604

    中国地质调查局项目 1212010914036

    详细信息
      作者简介:

      胡新丽(1968-), 女, 博士, 教授, 从事岩土工程稳定性评价、地质灾害防治设计教学与科研工作.E-mail: huxinli@cug.edu.cn

    • 中图分类号: P642

    Collapse Mode and Mechanism of High Magmatite Rock Slope in Wenchuan Epicentral Area

    • 摘要: 汶川8.0级大地震触发了大量岩石边坡崩塌次生地质灾害, 不同岩性及结构的岩质高边坡, 强震作用下的破坏机理不同, 震中映秀岩浆岩高边坡在强震中破坏严重, 因此急需开展其破坏机理的研究.以震中映秀典型高边坡崩塌-虎嘴崩塌为研究对象, 在工程地质条件研究的基础上, 采用结构面统计模拟方法, 深入分析岩浆岩边坡的结构面组合特征, 通过赤平投影法初步确定了该类边坡的破坏模式: 由3组主控结构面相互贯通的双平面滑动.恢复老虎嘴岩质边坡在地震前的原始坡形, 采用2DUDEC再现地震作用下老虎嘴岩质高边坡的破坏过程, 得出在地震作用下的破坏规律: 老虎嘴边坡在地震作用下的渐进破坏过程主要表现为边坡前缘岩体首先破坏, 坡顶岩体沿着3组结构面的切割贯通面也产生拉裂破坏发生崩塌, 最终整个边坡溃塌.在重力和地震的双重作用下坡顶破坏呈现出抛射状.

       

    • 图  1  老虎嘴崩塌体工程地质剖面

      Fig.  1.  Laohuzui collapse profile

      图  2  结构面极点

      Fig.  2.  Pole graph of rockmass structure

      图  3  坡面与结构面赤平投影

      Fig.  3.  Stereographic projection of slope and structures

      图  4  网格剖分

      Fig.  4.  2D numerical simulation meshes

      图  5  地震波加速度谱和速度谱

      a.东西向地震波0.1~10Hz滤波、线性基线校准后加速度谱;b.竖向地震波0.1~10Hz滤波、线性基线校准后速度谱

      Fig.  5.  Accelerated velocity curve and velocity curve of earthquake wave

      图  6  水平和竖直地震应力时程输入

      Fig.  6.  Horizontal and vertical seismic stress process input

      图  7  坡脚和坡顶位移变化

      a.坡脚x方向;b.坡脚y方向;c.坡顶x方向;d.坡顶y方向

      Fig.  7.  Displacement curve with time at slope bottom and slope top

      图  8  边坡破坏分布

      Fig.  8.  Destruction distribution in slope

      表  1  岩石力学参数

      Table  1.   Mechanical parameters of rock

      岩性 密度(g/cm3) 变形模量(GPa) 体积模量(GPa) 内摩擦角(°) 内聚力(MPa) 剪胀角(°) 拉伸强度(MPa)
      蚀变细粒闪长岩 2.88 35.53 21.32 55 25 10 8
      下载: 导出CSV

      表  2  结构面强度参数

      Table  2.   Mechanical parameters of structural surface

      岩性 法向刚度(MPa/cm) 切向刚度(MPa/cm) 内摩擦角(°) 内聚力(MPa) 剪胀角(°) 拉伸强度(MPa)
      结构面 51 46 38 0.06 0 0
      下载: 导出CSV
    • [1] Chen, J.J., 2009. The analysis of seismic dynamic response of slopes in mountains with complex geological backgrounds (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      [2] Chen, L.L., Chen, M.Z., Qian, S.G., 2004. Stability analysis of high-steep rocky slope under earthquake loads. Journal of Yangtze River Scientific Research Institute, 21(1): 33-35 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJKB200401010.htm
      [3] Keefer, D.K., 1984. Landslides caused by earthquake. Geological Society of America Bulletin, 95(4): 406-421. doi: 10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2
      [4] Ling, H.I., Cheng, A.D., 1997. Rock sliding induced by seismic force. International Journal of Rock Mechanics and Mining Sciences, 34(6): 1021-1029. doi: 10.1016/S1365-1609(97)80011-1
      [5] Liu, H.L., Fei, K., Gao, Y.F., 2003. Time history analysis method of slope seismic stability. Rock and Soil Mechanics, 24(4): 553-556, 560 (in Chinese with English abstract). http://www.researchgate.net/publication/312453536_Time_history_analysis_method_of_slope_seismic_stability
      [6] Qi, S.W., 2004. Slope dynamic responses analysis(Dissertation). Insititue of Geology and Geophysics, Chinese Academy of Sciences, Beijing (in Chinese with English abstract).
      [7] Qiu, R.D., Shi, Y.C., Fu, C.H., 2007. General laws of dynamic responses of the high slopes under horizontal dynamic input. World Earthquake Engineering, 23(2): 131-138 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=24668923
      [8] Siad, L., 2003. Seismic stability analysis of fractured rock slopes by yield design theory. Soil Dynamics and Earthquake Engineering, 23(3): 203-212. http://www.sciencedirect.com/science/article/pii/S0267726102002130
      [9] Tao, L.J., Su, S.R., Zhang, Z.Y., 2001. Dynamic stability analysis of jointed rock slope. Journal of Engineering Geology, 9(1): 32-38 (in Chinese with English abstract).
      [10] Wu, Q.W., 1983. The influence of earthquake on the natural slope stability in mountainous regions. Journal of Mountain Research, 1(1): 27-34 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SDYA198301005.htm
      [11] Xu, X.N., Wang, L.S., 2005. On the mechanism of slope deformation-failures and their distribution characteristics in a high earthquake-intensity area. Journal of Engineering Geology, 13(1): 68-75 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ20050100A.htm
      [12] Yang, Q.H., Yao, L.K., Ren, Z.M., et al., 2008. Centrifugal model test on dynamical characteristics of landslips of loose slope under seismic loading. Chinese Journal of Rock Mechanics and Engineering, 27(2): 368-374 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/yslxygcxb200802020
      [13] Zheng, Y.R., Ye, H.L., Huang, R.Q., 2009. Analysis and discussion of failure mechanism and fracture surface of slope under earthquake. Chinese Journal of Rock Mechanics and Engineering, 28(8): 1714-1723 (in Chinese with English abstract). http://www.researchgate.net/publication/289398444_Analysis_and_discussion_of_failure_mechanism_and_fracture_surface_of_slope_under_earthquake
      [14] 陈建君, 2009. 复杂山区斜坡的地震动力响应分析(硕士论文). 成都: 成都理工大学.
      [15] 陈玲玲, 陈敏中, 钱胜国, 2004. 岩质陡高边坡地震动力稳定分析. 长江科学院院报, 21(1): 33-35. doi: 10.3969/j.issn.1001-5485.2004.01.010
      [16] 刘汉龙, 费康, 高玉峰, 2003. 边坡地震稳定性时程分析方法. 岩土力学, 24(4): 553-556, 560. doi: 10.3969/j.issn.1000-7598.2003.04.013
      [17] 祁生文, 2004. 边坡动力反应分析(博士后论文). 北京: 中国科学院地质与地球物理研究所.
      [18] 秋仁东, 石玉成, 付长华, 2007. 高边坡在水平动荷载作用下的动力响应规律研究. 世界地震工程, 23(2): 131-138. doi: 10.3969/j.issn.1007-6069.2007.02.021
      [19] 陶连金, 苏生瑞, 张倬元, 2001. 节理岩体边坡的动力稳定性分析. 工程地质学报, 9(1): 32-38. doi: 10.3969/j.issn.1004-9665.2001.01.006
      [20] 吴其伟, 1983. 地震对山区自然斜坡稳定性的影响. 山地研究, 1(1): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA198301005.htm
      [21] 许向宁, 王兰生, 2005. 岷江上游叠溪地震区斜坡变形破坏分区特征及其成因机制分析. 工程地质学报, 13(1): 68-75. doi: 10.3969/j.issn.1004-9665.2005.01.011
      [22] 杨庆华, 姚令侃, 任自铭, 等, 2008. 地震作用下松散体斜坡崩塌动力学特性离心模型试验研究. 岩石力学与工程学报, 27(2): 368-374. doi: 10.3321/j.issn:1000-6915.2008.02.020
      [23] 郑颖人, 叶海林, 黄润秋, 2009. 地震边坡破坏机制及其破裂面的分析探讨. 岩石力学与工程学报, 28 (8): 1714-1723. doi: 10.3321/j.issn:1000-6915.2009.08.024
    • 加载中
    图(8) / 表(2)
    计量
    • 文章访问数:  176
    • HTML全文浏览量:  57
    • PDF下载量:  5
    • 被引次数: 0
    出版历程
    • 收稿日期:  2011-09-02
    • 网络出版日期:  2021-11-10
    • 刊出日期:  2011-06-15

    目录

      /

      返回文章
      返回