• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    惠民凹陷临盘油区断裂胶结带基本特征及形成机制

    刘金 宋国奇 郝雪峰 宿春梁 刘克奇

    刘金, 宋国奇, 郝雪峰, 宿春梁, 刘克奇, 2011. 惠民凹陷临盘油区断裂胶结带基本特征及形成机制. 地球科学, 36(6): 1119-1124. doi: 10.3799/dqkx.2011.117
    引用本文: 刘金, 宋国奇, 郝雪峰, 宿春梁, 刘克奇, 2011. 惠民凹陷临盘油区断裂胶结带基本特征及形成机制. 地球科学, 36(6): 1119-1124. doi: 10.3799/dqkx.2011.117
    LIU Jin, SONG Guo-qi, HAO Xue-feng, XU Chun-liang, LIU Ke-qi, 2011. Characteristics of Fault Cementation Zone and Its Origin in Linpan Oil Pool of the Huimin Depression. Earth Science, 36(6): 1119-1124. doi: 10.3799/dqkx.2011.117
    Citation: LIU Jin, SONG Guo-qi, HAO Xue-feng, XU Chun-liang, LIU Ke-qi, 2011. Characteristics of Fault Cementation Zone and Its Origin in Linpan Oil Pool of the Huimin Depression. Earth Science, 36(6): 1119-1124. doi: 10.3799/dqkx.2011.117

    惠民凹陷临盘油区断裂胶结带基本特征及形成机制

    doi: 10.3799/dqkx.2011.117
    基金项目: 

    中国石化股份公司科技攻关项目 P08037

    详细信息
      作者简介:

      刘金(1968-), 男, 高级工程师, 长期从事油气勘探的研究工作.E-mail: lj8861051@sina.com

    • 中图分类号: TE111.2

    Characteristics of Fault Cementation Zone and Its Origin in Linpan Oil Pool of the Huimin Depression

    • 摘要: 惠民凹陷临盘油区断块油田广泛发育, 但对其封闭机制认识不清.从临盘复杂断块油田的实际地质资料出发, 依据岩心、测井资料, 结合物性、扫描电镜等实验分析, 探讨了断裂胶结带的基本特征和形成机制.研究表明, 临盘油区富含钙镁离子的地层水在断裂活动过程中沿断裂向上流动, 随着压力的降低导致在断层附近砂岩中易形成方解石、白云石等矿物的沉淀, 从而形成了致密的断裂胶结带, 胶结带内孔渗性急剧变差, 喉道半径和渗透率约降低一个数量级, 成为封堵油气的有利屏障.

       

    • 图  1  惠民凹陷临盘油区构造位置

      Fig.  1.  Structural location of Linpan oilfield of the Huimin depression

      图  2  XI503井岩心资料显示断裂胶结带与断面基本平行

      Fig.  2.  Fault cementation zone parallel to the fault plane according to the drilling data of well XI503

      图  3  断裂胶结带与正常砂岩物性对比

      Fig.  3.  Correlation of physical property of sands in fault cementation zone and normal sands

      图  4  XI503井断裂胶结带与邻井测井特征对比

      Fig.  4.  Correlation of well logging characteristics between fault cementation zone of well XI503 and normal strata in neighboring well

      图  5  Q104-X205井身轨迹与断层相对位置剖面

      Fig.  5.  Fault section along wellbore trajectory of well Q104-X205

      图  6  XI503井断面下部泥岩NY-4样品薄片照片

      Fig.  6.  Calcite filled in the mudstone of fault cementation zone

      表  1  断裂胶结带砂岩与正常砂岩成分对比

      Table  1.   Correlation of sands in fault cementation zone and normal sands

      类别 正常砂岩 断裂胶结带
      陆源碎屑(%) 石英 45.0 46.4
      长石 33.3 34.3
      岩屑类 21.5 19.2
      填隙物(%) 泥质 6.1 0.8
      方解石、白云石等矿物 5.2 25.3
      合计 11.3 26.1
      孔隙体积(%) 孔隙度 14.3 4.8
      下载: 导出CSV

      表  2  临南洼陷各层位油田水

      Table  2.   Field water of different strata in Linnan sag

      层位 矿化度(mg/L) CO32- SO42- Cl- Ca2+ K++Na+ Mg2+ Na+/Cl- 水型 样品数
      Ng 9031 318 40 5955 214 3276 68 0.56~0.92 CaCl2 36
      Ed 18495 484 64 10171 227 6373 94 0.55~0.97 CaCl2 42
      Es1 25224 618 43 14334 567 8659 172 0.41~1.29 CaCl2 65
      Es2 29122 664 165 16534 849 9783 312 0.21~1.57 CaCl2 181
      Es3 38573 630 119 22082 1574 12385 308 0.36~1.33 CaCl2 78
      Es4s 57475 345 349 35799 3229 17881 528 0.45~0.97 CaCl2 43
      Es4x 102933 264 610 68757 16351 41790 42084 0.45 CaCl2 8
      下载: 导出CSV

      表  3  温度对碳酸盐岩淋溶作用的影响

      Table  3.   Leaching effect of temperature on carbonate

      温度(℃) 溶解时间(h) 1g样品淋溶数量(mg/h)
      MgCO3 CaCO3 CaMg(CO3)2
      25 5.75 0.20 0.42 0.62
      50 4.5 0.22 0.69 0.91
      下载: 导出CSV
    • [1] Allan, U.S., 1989. Model for hydrocarbon migration and entrapment within faulted structures. AAPG bulletin, 73(7): 803-811. http://ci.nii.ac.jp/naid/80004680502
      [2] Du, C.G., Hao, F., Zou, H.Y., et al., 2007. Progress and problems of faults conduit systems for hydrocarbon migration. Geological Science and Technology Information, 26(1): 51-55 (in Chinese with English). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200701009.htm
      [3] Haney, M.M., Snieder, R., Sheiman, J., et al., 2005. A moving fluid pulse in a fault zone. Nature, 437(7055): 46. doi: 10.1038/437046a
      [4] Jiang, Z.X., Dong, Y.X., Li, H.Y., et al., 2008. Limitation of fault-sealing and its control on hydrocarbon accumulation: an example from the Laoyemiao oilfield of the Nanpu sag. Petroleum Science, 5(4): 295-301. doi: 10.1007/s12182-008-0049-6
      [5] Jin, Z.J., Zhang, F.Q., 2005. Status and major advancements in study of hydrocarbon migration. Oil & Gas Geology, 26(3): 263-270 (in Chinese with English). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200503001.htm
      [6] Li, D.L., Guan, P., 2004. Research situation and prospect of hydrocarbon migration in China. Acta Scientiarum Naturalium Universitatis Pekinensis, 40(4): 658-668 (in Chinese with English). http://www.researchgate.net/publication/291264479_Research_situation_and_prospect_of_hydrocarbon_migration_in_China
      [7] Lü, Y.F., Fu, G., 2002. Research on fault sealing properties. Petroleum Industry Press, Beijing (in Chinese).
      [8] Song, G.Q., Liu, K.Q., 2009. Fracture characteristics around faults and their significance in petroleum accumulation. Petroleum Geology and Recovery Efficiency, 16(4): 1-3 (in Chinese with English). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YQCS200904004.htm
      [9] Wang, L.J., Wu, C.L., Wang, C.H., 2006. A review of the advances in the study of secondary oil-gas migration. Geological Bulletin of China, 25(9-10): 1220-1224 (in Chinese with English). http://www.researchgate.net/publication/289573839_A_review_of_the_advances_in_the_study_of_secondary_oil-gas_migration
      [10] Wiebe, R., Gaddy, V.L., 1940. The solubility of carbon dioxide in water at various temperatures from 12° to 40° and at pressures to 500 atmospheres. Journal of the American Chemical Society, 62(4): 815-817. doi: 10.1021/ja01861a033
      [11] Yielding, G., Freeman, B., Needham, D.T., 1997. Quantitative fault seal prediction. AAPG Bulletin, 81(6): 897-917. http://aapgbull.geoscienceworld.org/content/81/6/897
      [12] Zhang, H.F., Zhang, W.X., 1989. Petroleum geology. Petroleum Industry Press, Beijing (in Chinese).
      [13] 杜春国, 郝芳, 邹华耀, 等, 2007. 断裂输导体系研究现状及存在的问题. 地质科技情报, 26(1): 51-55. doi: 10.3969/j.issn.1000-7849.2007.01.009
      [14] 金之钧, 张发强, 2005. 油气运移研究现状及主要进展. 石油与天然气地质, 26(3): 263-270. doi: 10.3321/j.issn:0253-9985.2005.03.001
      [15] 李多丽, 关平, 2004. 中国油气二次运移的研究现状及展望. 北京大学学报(自然科学版), 40(4): 658-668. doi: 10.3321/j.issn:0479-8023.2004.04.023
      [16] 吕延防, 付广, 2002. 断层封闭性研究. 北京: 石油工业出版社.
      [17] 宋国奇, 刘克奇, 2009. 断层两盘裂缝发育特征及其石油地质意义. 油气地质与采收率, 16(4): 1-3. doi: 10.3969/j.issn.1009-9603.2009.04.001
      [18] 王连进, 吴冲龙, 王春辉, 2006. 油气二次运移研究进展述评. 地质通报, 25(9-10): 1220-1224. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2006Z2040.htm
      [19] 张厚福, 张万选, 1989. 石油地质学. 北京: 石油工业出版社.
    • 加载中
    图(6) / 表(3)
    计量
    • 文章访问数:  182
    • HTML全文浏览量:  76
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2011-05-13
    • 网络出版日期:  2021-11-10
    • 刊出日期:  2011-06-15

    目录

      /

      返回文章
      返回