Characteristics of Fault Cementation Zone and Its Origin in Linpan Oil Pool of the Huimin Depression
-
摘要: 惠民凹陷临盘油区断块油田广泛发育, 但对其封闭机制认识不清.从临盘复杂断块油田的实际地质资料出发, 依据岩心、测井资料, 结合物性、扫描电镜等实验分析, 探讨了断裂胶结带的基本特征和形成机制.研究表明, 临盘油区富含钙镁离子的地层水在断裂活动过程中沿断裂向上流动, 随着压力的降低导致在断层附近砂岩中易形成方解石、白云石等矿物的沉淀, 从而形成了致密的断裂胶结带, 胶结带内孔渗性急剧变差, 喉道半径和渗透率约降低一个数量级, 成为封堵油气的有利屏障.Abstract: Fault block oil reservoirs are well developed in Linpan oil pool of the Huimin depression. But the sealing mechanism of fault is not clear. The fault cementation zone characteristics and its origin are discussed by means of core data, well logging data, physical property and scanning electronic microscope analysis. The subsurface water rich in Ca2+ and Mg2+ migrates from deep formation to shallow part along the fault zone during faulting activity in Linpan oil pool. Calcite and dolomite deposit along the fault zone due to the decreasing geothermal pressure upward. As a result, the permeability of the fault zone decreases about one order of magnitude and the accumulated oil is well sealed by fault cementation zone.
-
表 1 断裂胶结带砂岩与正常砂岩成分对比
Table 1. Correlation of sands in fault cementation zone and normal sands
类别 正常砂岩 断裂胶结带 陆源碎屑(%) 石英 45.0 46.4 长石 33.3 34.3 岩屑类 21.5 19.2 填隙物(%) 泥质 6.1 0.8 方解石、白云石等矿物 5.2 25.3 合计 11.3 26.1 孔隙体积(%) 孔隙度 14.3 4.8 表 2 临南洼陷各层位油田水
Table 2. Field water of different strata in Linnan sag
层位 矿化度(mg/L) CO32- SO42- Cl- Ca2+ K++Na+ Mg2+ Na+/Cl- 水型 样品数 Ng 9031 318 40 5955 214 3276 68 0.56~0.92 CaCl2 36 Ed 18495 484 64 10171 227 6373 94 0.55~0.97 CaCl2 42 Es1 25224 618 43 14334 567 8659 172 0.41~1.29 CaCl2 65 Es2 29122 664 165 16534 849 9783 312 0.21~1.57 CaCl2 181 Es3 38573 630 119 22082 1574 12385 308 0.36~1.33 CaCl2 78 Es4s 57475 345 349 35799 3229 17881 528 0.45~0.97 CaCl2 43 Es4x 102933 264 610 68757 16351 41790 42084 0.45 CaCl2 8 表 3 温度对碳酸盐岩淋溶作用的影响
Table 3. Leaching effect of temperature on carbonate
温度(℃) 溶解时间(h) 1g样品淋溶数量(mg/h) MgCO3 CaCO3 CaMg(CO3)2 25 5.75 0.20 0.42 0.62 50 4.5 0.22 0.69 0.91 -
[1] Allan, U.S., 1989. Model for hydrocarbon migration and entrapment within faulted structures. AAPG bulletin, 73(7): 803-811. http://ci.nii.ac.jp/naid/80004680502 [2] Du, C.G., Hao, F., Zou, H.Y., et al., 2007. Progress and problems of faults conduit systems for hydrocarbon migration. Geological Science and Technology Information, 26(1): 51-55 (in Chinese with English). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200701009.htm [3] Haney, M.M., Snieder, R., Sheiman, J., et al., 2005. A moving fluid pulse in a fault zone. Nature, 437(7055): 46. doi: 10.1038/437046a [4] Jiang, Z.X., Dong, Y.X., Li, H.Y., et al., 2008. Limitation of fault-sealing and its control on hydrocarbon accumulation: an example from the Laoyemiao oilfield of the Nanpu sag. Petroleum Science, 5(4): 295-301. doi: 10.1007/s12182-008-0049-6 [5] Jin, Z.J., Zhang, F.Q., 2005. Status and major advancements in study of hydrocarbon migration. Oil & Gas Geology, 26(3): 263-270 (in Chinese with English). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200503001.htm [6] Li, D.L., Guan, P., 2004. Research situation and prospect of hydrocarbon migration in China. Acta Scientiarum Naturalium Universitatis Pekinensis, 40(4): 658-668 (in Chinese with English). http://www.researchgate.net/publication/291264479_Research_situation_and_prospect_of_hydrocarbon_migration_in_China [7] Lü, Y.F., Fu, G., 2002. Research on fault sealing properties. Petroleum Industry Press, Beijing (in Chinese). [8] Song, G.Q., Liu, K.Q., 2009. Fracture characteristics around faults and their significance in petroleum accumulation. Petroleum Geology and Recovery Efficiency, 16(4): 1-3 (in Chinese with English). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YQCS200904004.htm [9] Wang, L.J., Wu, C.L., Wang, C.H., 2006. A review of the advances in the study of secondary oil-gas migration. Geological Bulletin of China, 25(9-10): 1220-1224 (in Chinese with English). http://www.researchgate.net/publication/289573839_A_review_of_the_advances_in_the_study_of_secondary_oil-gas_migration [10] Wiebe, R., Gaddy, V.L., 1940. The solubility of carbon dioxide in water at various temperatures from 12° to 40° and at pressures to 500 atmospheres. Journal of the American Chemical Society, 62(4): 815-817. doi: 10.1021/ja01861a033 [11] Yielding, G., Freeman, B., Needham, D.T., 1997. Quantitative fault seal prediction. AAPG Bulletin, 81(6): 897-917. http://aapgbull.geoscienceworld.org/content/81/6/897 [12] Zhang, H.F., Zhang, W.X., 1989. Petroleum geology. Petroleum Industry Press, Beijing (in Chinese). [13] 杜春国, 郝芳, 邹华耀, 等, 2007. 断裂输导体系研究现状及存在的问题. 地质科技情报, 26(1): 51-55. doi: 10.3969/j.issn.1000-7849.2007.01.009 [14] 金之钧, 张发强, 2005. 油气运移研究现状及主要进展. 石油与天然气地质, 26(3): 263-270. doi: 10.3321/j.issn:0253-9985.2005.03.001 [15] 李多丽, 关平, 2004. 中国油气二次运移的研究现状及展望. 北京大学学报(自然科学版), 40(4): 658-668. doi: 10.3321/j.issn:0479-8023.2004.04.023 [16] 吕延防, 付广, 2002. 断层封闭性研究. 北京: 石油工业出版社. [17] 宋国奇, 刘克奇, 2009. 断层两盘裂缝发育特征及其石油地质意义. 油气地质与采收率, 16(4): 1-3. doi: 10.3969/j.issn.1009-9603.2009.04.001 [18] 王连进, 吴冲龙, 王春辉, 2006. 油气二次运移研究进展述评. 地质通报, 25(9-10): 1220-1224. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2006Z2040.htm [19] 张厚福, 张万选, 1989. 石油地质学. 北京: 石油工业出版社.