Crustal Extension of the Bangong Lake Arc Zone, Western Tibetan Plateau, After the Closure of the Tethys Oceanic Basin
-
摘要: 青藏高原西部班公湖-怒江缝合带西端的班公湖地区分布着一系列南北向和东西向岩脉: 花岗斑岩和闪长玢岩.通过岩石地球化学系统分析和锆石U-Pb LA-ICP-MS年龄测定, 指出这些岩脉代表了班公湖中特提斯洋盆闭合后的地壳伸展事件.呈南北向产出的花岗斑岩脉13个锆石颗粒测试结果给出了79.59±0.32Ma(MSWD=1.08)的加权平均年龄; 既有南北向也有东西向产出的闪长玢岩脉6个锆石颗粒给出了75.9±1.2Ma(MSWD=2.8)的加权平均年龄.这些结果表明班公湖岛弧带发生在晚白垩世的地壳伸展作用一开始只沿东西向进行, 稍后南北向也开始伸展.岩石地球化学特征表明, 2种脉岩都具有岛弧岩浆特征, 这是由于岩浆源区的印度洋MORB型地幔受到了来自俯冲沉积物熔体的交代.处于较深部位的闪长玢岩源区参与交代的沉积物熔体大体在1%~10%之间, 部分熔融程度约为8%~15%;处于较浅部位的花岗斑岩源区参与交代的沉积物熔体约在10%~15%之间, 部分熔融程度大于15%.Abstract: A series of NS-and EW-striking dykes occur in Bangong lake region, western segment of the Bangong lake-Nujiang suture in Tibetan plateau, including both granite porphyry and diorite porphyrite. Based on petrochemical analyses and zircon U-Pb LA-ICP-MS dating combined with field investigation, the present authors propose that these dykes represent a crustal extension event of the Bangong lake arc zone after the closure of Bangeng lake middle-Tethys oceanic basin. The granite porphyries occuring only in NS-strike and the diorite porphyrites occuring both in NS- and EW-strike respectively yield a weighted mean age of 79.59±0.32Ma (MSWD=1.08) with 13 zircons and (76.9±1.2)Ma (MSWD=2.8) with 6. These results indicate that the crustal extensional process of the Bangong lake arc zone occurring in Late Cretaceous epoch was initialed only in EW-trending and slightly later also in NS-trending. Petrochemically, the two types of the dykes appear arc magmatic features characterized by enrichment of large iron incompatible elements (Rb, U, Th, K, Pb) and depletion of high field strength elements (Nb and Ti) which were attributed to metasomatism of Indian-MORB mantle by subducted sediment melt. Furthermore, by analyzing geochemical characteristics of the dyke, we come to the conclusion that the granite porphyries were generated at a shallower depth under amphibolite facies conditions, and the diorite porphyrites were probably under eclogite facies or garnet amphibolite conditions. And the amount of sediment melt involved in the mantle metasomatism related to diorite porphyrites varies largely from 1% to 10% with a source partial melting degree ranging from 8% to 15%. Whereas in the granite porphyries, the amount varies from 10% to 15% and their source partial melting degree is up to 15%.
-
Key words:
- crustal extension /
- dyke /
- magma source /
- Bangong lake island arc zone /
- Tibetan plateau
-
图 8 班公湖岛弧带洋盆闭合后形成的脉岩的地球化学特征
a.标有沉积物熔体的箭头线为沉积物熔体与印度洋MORB地幔的混合线,线上的百分数代表沉积物熔体所占的百分比;b.样品分布呈负斜率代表二元混合;a和b图中的印度洋MORB据Rehkämpe and Hofmann(1997);GLOSS据Plank and Langmuir(1998);c.IP-Bas代表板内玄武岩;SM代表沉积物熔体;Xen代表地壳混染物;箭头线代表不同角闪石含量的混合线;原图据Gómez-Tuenal et al.(2007);d.虚线上的百分数代表地幔的部分熔融程度,实线上的百分数代表沉积物熔体所占的比例
Fig. 8. Geochemical characters of the dykes formed after the closure of the Tethys oceanic basin in the Bangong lake island arc zone
表 1 班公湖岛弧带岛弧型侵入岩常量元素、微量元素和稀土元素分析结果
Table 1. Major, trace and rare earth element analysis results of arc magmatic rocks in the Bangong lake island arc zone
样品编号 B08- 011 B08- 012 B08- 013 B08- 021 B08- 022 B08- 023 B08- 031 B08- 032 B08- 033 B08- 041 B08- 042 B08- 043 岩石类型 闪长玢岩 花岗斑岩 石英闪长玢岩 常量、微量(%) SiO2 56.13 57.58 56.14 76.01 78.44 79.38 64.41 66.05 64.82 65.26 62.89 64.83 TiO2 1.07 1.10 1.12 0.21 0.07 0.081 0.70 0.66 0.72 0.67 0.64 0.68 Al2O3 16.34 16.39 15.80 15.17 14.19 13.34 16.62 16.52 16.38 16.65 16.52 15.92 Fe2O3 5.92 6.64 6.82 0.91 0.42 0.40 3.77 3.52 3.79 3.35 3.37 3.23 FeO 3.65 4.72 4.50 0.50 0.25 0.22 0.80 2.50 2.55 0.40 0.40 0.65 CaO 4.16 3.20 4.00 0.29 0.28 0.23 2.15 1.50 2.14 2.33 3.72 2.98 MgO 3.93 4.14 4.57 0.27 0.15 0.22 1.92 1.86 1.96 0.68 0.65 0.61 MnO 0.079 0.079 0.088 0.0061 0.0041 0.0072 0.058 0.054 0.057 0.059 0.056 0.057 Na2O 3.45 3.62 3.77 0.14 0.12 0.15 4.30 3.91 4.36 3.57 3.86 3.91 K2O 2.21 2.09 1.94 4.11 3.55 3.13 2.60 2.60 2.50 3.06 2.82 2.86 P2O5 0.33 0.35 0.35 0.039 0.021 0.026 0.24 0.23 0.25 0.22 0.22 0.22 LOI 6.32 4.72 5.32 2.78 2.68 2.97 3.16 3.03 2.95 4.08 5.22 4.67 Total 112.00 113.00 114.00 115.00 116.00 117.00 118.00 119.00 120.00 121.00 122.00 123.00 Ba 417.00 357.00 535.00 437.00 313.00 314.00 420.00 430.00 412.00 369.00 312.00 417.00 Be 2.51 2.05 1.96 3.85 2.45 2.41 1.98 1.83 1.91 1.94 2.03 2.24 Sc 13.70 14.60 14.30 3.23 3.13 2.82 7.82 7.63 8.45 7.34 7.33 7.27 V 121.00 126.00 122.00 17.50 3.97 5.38 67.20 66.80 70.40 67.60 62.60 62.20 Cr 74.00 81.30 91.30 7.05 4.72 8.77 26.30 30.30 29.90 26.50 24.70 18.40 Co 23.90 19.00 18.40 0.861 0.42 2.00 9.31 9.13 9.73 11.20 10.70 9.68 Ni 57.20 55.20 60.30 3.06 2.83 8.24 28.30 30.80 28.80 31.70 27.60 18.70 Cu 56.10 56.00 35.80 1.99 3.12 2.45 25.50 22.70 22.50 35.10 42.50 26.50 Pb 14.60 8.69 14.30 14.00 16.00 17.80 9.65 10.30 13.30 8.70 9.89 8.52 Zn 84.60 62.20 79.70 29.20 19.00 24.30 88.70 86.80 75.10 56.60 59.50 49.60 Ga 22.00 21.80 21.30 21.20 15.80 15.20 20.50 21.10 21.80 20.80 20.10 19.90 Rb 85.00 82.90 62.00 166.00 120.00 107.00 114.00 121.00 101.00 112.00 113.00 125.00 Sr 384.00 407.00 439.00 15.00 24.90 34.90 400.00 350.00 432.00 257.00 324.00 368.00 W 0.38 0.359 0.156 4.53 0.547 0.88 0.098 0.171 0.131 0.84 0.794 2.28 Mo 1.91 1.07 0.733 0.355 - 0.006 0.355 0.285 0.26 0.964 1.50 1.80 Sb 5.46 2.24 2.03 1.11 0.743 0.774 1.80 1.70 1.17 0.977 0.849 1.15 Bi 0.143 0.093 0.145 0.182 0.179 0.096 0.031 0.027 0.051 0.13 0.11 0.063 Nb 21.40 20.80 19.70 10.10 10.30 10.90 13.90 13.50 13.80 16.20 14.30 15.20 Ta 1.41 1.36 1.30 1.89 2.05 1.98 1.06 1.13 1.02 1.25 1.13 1.22 Zr 463.00 494.00 436.00 123.00 118.00 126.00 318.00 323.00 340.00 251.00 219.00 238.00 Hf 10.30 9.71 8.47 3.81 5.01 5.43 6.96 6.75 7.22 5.70 5.31 5.46 U 2.81 2.75 2.22 2.51 3.04 2.96 2.02 2.07 2.05 3.18 2.82 2.88 Th 14.40 13.60 12.00 14.70 18.20 18.10 10.80 11.60 11.10 15.20 13.70 14.50 Y 21.70 20.60 20.40 12.50 27.30 22.30 14.90 15.80 15.40 15.30 15.20 15.80 REE(10-6) La 43.80 32.60 28.80 45.80 16.00 22.10 38.90 36.20 36.00 43.00 38.90 40.10 Ce 81.40 60.50 56.40 80.00 32.30 43.50 65.20 63.30 66.00 73.30 67.70 71.90 Pr 8.48 6.72 5.85 8.27 3.83 5.00 7.23 6.84 7.00 7.45 7.21 7.10 Nd 31.00 24.00 23.00 26.50 14.70 18.10 25.30 24.30 24.80 26.10 24.50 25.90 Sm 5.01 3.88 3.62 3.73 3.51 4.00 3.77 3.84 3.93 3.97 3.86 3.98 Eu 1.09 1.03 0.978 0.556 0.395 0.383 0.993 0.939 1.05 1.05 1.05 1.01 Gd 4.65 3.73 3.81 3.24 3.33 3.47 3.53 3.58 3.47 3.54 3.54 3.59 Tb 0.732 0.634 0.613 0.407 0.679 0.574 0.522 0.518 0.512 0.547 0.528 0.517 Dy 3.82 3.65 3.49 2.07 4.04 3.38 2.67 2.89 2.72 2.85 2.51 2.85 Ho 0.742 0.698 0.66 0.391 0.867 0.701 0.506 0.505 0.515 0.524 0.518 0.541 Er 2.10 2.01 1.92 1.13 2.54 2.13 1.38 1.45 1.43 1.44 1.37 1.57 Tm 0.308 0.308 0.291 0.188 0.396 0.363 0.205 0.244 0.213 0.23 0.206 0.223 Yb 1.96 1.91 1.74 1.17 2.45 2.04 1.36 1.37 1.36 1.31 1.34 1.38 Lu 0.304 0.284 0.27 0.20 0.373 0.336 0.208 0.218 0.199 0.205 0.201 0.215 以下单位为1 Nb/Ta 15.18 15.29 15.15 5.34 5.02 5.51 13.11 11.95 13.53 12.96 12.65 12.46 (La/Yb)N 14.46 11.04 10.71 25.33 4.23 7.01 18.51 17.10 17.13 21.24 18.78 18.80 δEu 0.69 0.82 0.81 0.48 0.35 0.31 0.83 0.77 0.86 0.85 0.86 0.81 注:-表示未检出. 表 2 班公湖岛弧带洋盆闭合后形成的脉岩的锆石U-Pb同位素分析结果
Table 2. U-Pb isotope analysis results of zircon from the dykes formed after the closure of the Tethys oceanic basin in the Bangong lake island arc zone
岩石类型 样品号/分析号 206Pbc(%) U(10-6) Th(10-6) Th/U Pb*(10-6) 206Pb/238U年龄(Ma) 1σ 207Pb/235U 1σ 206Pb/238U 1σ 花
岗
斑
岩B08-021-01 - 464.3 272.53 0.586970 7.809557 79.4 0.5 0.08316 0.00201 0.01240 0.00008 B08-021-02 - 840.14 662.57 0.788642 15.14136 78.9 0.7 0.09284 0.00310 0.01232 0.00011 B08-021-04 - 124.89 76.4 0.611738 2.117163 79 1 0.08937 0.00591 0.01239 0.00018 B08-021-07 - 620.21 271.02 0.436981 10.13769 79.8 0.5 0.08172 0.00184 0.01245 0.00008 B08-021-09 - 395.5 225.71 0.570695 6.705114 79.8 0.6 0.08839 0.00227 0.01246 0.00009 B08-021-10 - 575.72 335.72 0.583131 9.597674 78.4 0.9 0.08623 0.00379 0.01224 0.00014 B08-021-13 - 757.95 607.01 0.800858 13.32861 78.4 0.5 0.08609 0.00191 0.01224 0.00008 B08-021-14 0.19 800.41 477.87 0.597032 13.57148 80 0.5 0.08344 0.00225 0.01249 0.00008 B08-021-15 - 500.96 292.25 0.583380 8.490788 79.7 0.6 0.08550 0.00223 0.01244 0.00009 B08-021-16 - 411.86 222.64 0.540572 6.943306 80.4 0.6 0.08793 0.00221 0.01255 0.00009 B08-021-17 - 300.8 189.75 0.630818 5.097190 79.7 0.6 0.08383 0.00260 0.01244 0.00010 B08-021-18 - 816.8 961.51 1.177167 16.56862 80 0.4 0.09091 0.00156 0.01248 0.00007 B08-021-19 - 141.53 70.45 0.497774 2.341428 80 1 0.09174 0.00720 0.01243 0.00023 闪
长
玢
岩B08-011-01 2.98 208.9 149.1 0.713739 6.773065 129.4 0.9 0.13864 0.00544 0.02028 0.00014 B08-011-02 3.31 191.13 114.43 0.598702 6.065559 128.9 0.9 0.13933 0.00532 0.02020 0.00014 B08-011-03 - 215.21 66.9 0.310859 5.941502 130.7 0.9 0.15416 0.00412 0.02048 0.00015 B08-011-04 - 319.92 72.56 0.226807 8.594291 131.9 0.8 0.14810 0.00275 0.02067 0.00012 B08-011-06 - 154.05 162.67 1.055956 3.010571 77.9 0.6 0.09107 0.00263 0.01215 0.00009 B08-011-10 1.48 226.5 241.91 1.068035 4.449303 77.1 0.6 0.07729 0.00312 0.01203 0.00010 B08-011-11 - 127.13 126.01 0.991190 2.468350 79 1 0.09247 0.00538 0.01226 0.00017 B08-011-12 5.89 226.74 317.38 1.399753 5.195432 75.4 0.6 0.08099 0.00444 0.01176 0.00010 B08-011-13 - 131.1 65.33 0.498322 3.801205 133.5 0.9 0.15992 0.00382 0.02093 0.00015 B08-011-14 4.97 137.97 140.04 1.015003 2.900800 76.4 0.7 0.08109 0.00465 0.01193 0.00010 B08-011-16 5.72 166.98 211.07 1.264044 3.776840 77 1 0.08981 0.01054 0.01202 0.00021 B08-011-18 1.48 248.32 117.35 0.472576 7.109877 131 1 0.13708 0.00556 0.02047 0.00017 -
[1] Cao, S.H., Li, D.W., Yu, Z.Z., et al., 2009. Characteristics and mechanism of the Dangra Yun Co and Xuru Co NS-trending graben in the Gangdese, Tibet. Earth Science—Journal of China University of Geosciences, 34(6): 914-920 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.104 [2] Chang, C.F., Zheng, X.L., Pan, Y.S., 1978. The geology history of Himalaya and tectonic belt division and causes for uplift. International Geological Collection of Academic Paper Ⅰ—Regional Tectonic and Geomechanics. Geological Publishing House, Beijing, 198-211 (in Chinese). [3] Class, C., Miller, D.M., Goldstein, S.L., et al., 2000. Distinguishing melt and fluid subduction components in Umnak volcanics, Aleutian arc. Geochemistry, Geophysics, Geosystems, 1: 1-34. doi: 10.1029/1999GC000010 [4] Coleman, M., Hodges, K., 1995. Evidence for Tibetan plateau uplift before 14Myr ago from a new minimum age for east-west extension. Nature, 374: 49-52. doi: 10.1038/374049a0 [5] Coulon, C., Maluski, H., Bollinger, C., et al., 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar/40Ar dating, petrological characteristics and geodynamical significance. Earth and Planetary Science Letters, 79(3-4): 281-302. doi: 10.1016/0012-821X(86)90186-X [6] Coward, M.P., Kidd, W.S.F., Pan, Y., et al., 1988. The structure of the 1985 Tibet geotraverse, Lhasa to Golmud. Philosophical Transactions of the Royal Society, 327(1594): 307-333. doi: 10.1098/rsta.1988.0131 [7] Dunlap, W.J., Wysoczanski, R., 2002. Thermal evidence for Early Cretaceous metamorphism in the Shyok suture zone and age of the Khardung volcanic rocks, Ladakh, India. Journal of Asian Earth Sciences, 20(5): 481-490. doi: 10.1016/S1367-9120(01)00042-6 [8] Elliott, T., Plank, T., Zindler, A., et al., 1997. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research, 102(B7): 14991-15019. doi: 10.1029/97JB00788 [9] Girardeau, J., Marcoux, J., Fourcade, E., et al., 1985. Xainxa ultramafic rocks, Central Tibet, China: tectonic environment and geodynamic significance. Geology, 13(5): 330-333. doi:10.1130/0091-7613(1985)13<330:XURCTC>2.0.CO;2 [10] Gómez-Tuenal, A., Langmuir, C.H., Goldstein, S.L., et al., 2007. Geochemical evidence for slab melting in the Trams-Mexican volcanic belt. Petrology, 48(3): 537-562. doi: 10.1093/petrology/egl071 [11] Kapp, P., Murphy, M.A., Yin, A., et al., 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 22(4): 1029-1053. doi: 10.1029/2001TC001332. [12] Mei, H.J., Lin, X.N., Chi, J.X., et al., 1981. On ophiolite system on Qinghai-Xizang plateau with particular reference to its genesis in West Xizang. Geol. Ecol Study of Qinghai-Xizang Plateau Proc. Symp. Qinghai-Xizang Plateau, 1: 545-556. http://www.researchgate.net/publication/313511669_On_ophiolite_system_on_Qinghai-Xizang_plateau_with_particular_reference_to_its_genesis_in_West_Xizang [13] Miller, C., Schuster, R., Klötzli, U., et al., 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 40(9): 1399-1424. doi: 10.1093/petroj/40.9.1399 [14] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006. Spatial-temporal framework of the Gangdese orogenic belt and its evolution. Acta Petrologica Sinica, 22(3): 521-533 (in Chinese with English abstract). http://www.oalib.com/paper/1472080 [15] Pan, G.T., Zhu, D.C., Wang, L.Q., et al., 2004. Bangong Lake-Nu river suture zone-the northern boundary of Gondwana land: evidence from geology and geophysics. Earth Science Frontiers, 11(4): 371-382 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200404005.htm [16] Pearce, J.A., Deng, W.M., 1988. The ophiolites of the Tibetan geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philosoplical Transactions of the Royal Society, 327(1594): 215-238. doi: 10.1098/rsta.1988.0127 [17] Plank, T., Langmuir, C.H., 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3-4): 325-394. doi: 10.1016/S0009-2541(97)00150-2 [18] Qu, X.M., Hou, Z.Q., Li, Y.G., 2004. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos, 74(3-4): 131-148. doi: 10.1016/j.lithos.2004.01.003 [19] Qu, X.M., Wang, R.J., Xin, H.B., et al., 2009. Geochronology and geochemistry of igneous rocks related to the subduction of the Tethys oceanic plate along the Bangong Lake arc zone, the western Tibetan plateau. Geochimica, 38(6): 523-535 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200906005.htm [20] Rehkämpe, M., Hofmann, A.W., 1997. Recycled ocean crust and sediment in Indian Ocean MORB. Earth and Planetary Sciences Letters, 147(1-4): 93-106. doi: 10.1016/S0012-821X(97)00009-5 [21] Srimal, N., 1986. India-Asia collision: implications from the geology of the eastern Karakoram. Geology, 14(6): 523-527. doi:10.1130/0091-7613(1986)14<523:ICIFTG>2.0.CO;2 [22] Tiepolo, M., Vannucci, R., Oberti, R., et al., 2000. Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite, crystal-chemical constraints and implications for natural systems. Earth and Planetary Science Letters, 176(2): 185-201. doi: 10.1016/S0012-821X(00)00004-2 [23] Turner, S., Hawkesworth, C., Rogers, N., et al., 1997. 238U-230Th disequilibria, magma petrogenesis, and flux rates beneath the depleted Tonga-Kermadec island arc. Geochimica et Cosmochimica Acta, 61(22): 4855-4884. doi: 10.1016/S0016-7037(97)00281-0 [24] Wang, W.L., Aitchison, J.C., Lo, C.H., et al., 2008. Geochemistry and geochronology of the amphibolite blocks in ophiolitic melange along Bangong-Nujing suture, Central Tibet. Journal of Asian Earth Sciences, 33: 122-138. doi: 10.1016/j.jseaes.2007.10.022 [25] Williams, H., Turner, S., Kelly, S., et al., 2001. Age and composition of dikes in southern Tibet: new constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 29(4): 339-342. doi:10.1130/0091-7613(2001)029<0339:AACODI>2.0.CO;2 [26] Yin, A., Harrison, T.M., 2000. Geological evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211 [27] Yin, A., Harrison, T.M., Ryerson, F.J., et al., 1994. Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet. Journal of Geophysical Research, 99(B9): 18175-18201. doi: 10.1029/94JB00504 [28] Yin, A., Kapp, P.A., Murphy, M.A., et al., 1999. Significant Late Neogene east-west extension in northern Tibet. Geology, 27(9): 787-790. doi:10.1130/0091-7613(1999)027<0787:SLNEWE>2.3.CO;2 [29] Zhao, T.P., Zhou, M.F., Zhao, J.H., et al., 2008. Geochronology and geochemistry of the c. 80Ma Rutog granitic pluton, northwestern Tibet: implications for the tectonic evolution of the Lhasa Terrane. Geological Magazine, 145(6): 845-857. doi: 10.1017/S0016756808005025 [30] 曹圣华, 李德威, 余忠珍, 等, 2009. 西藏冈底斯当惹雍错-许如错南北向地堑的特征及成因. 地球科学——中国地质大学学报, 34(6): 914-920. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200906006.htm [31] 常承法, 郑锡澜, 潘裕生, 1978. 喜马拉雅的地质发展历史、构造带的划分和隆起原因探讨. 国际交流地质学术论文集(1)——区域构造、地质力学. 北京: 地质出版社, 198-211. [32] 潘桂棠, 莫宣学, 侯增谦, 等, 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm [33] 潘桂棠, 朱弟成, 王立全, 等, 2004. 班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据. 地学前缘, 11(4): 371-382. doi: 10.3321/j.issn:1005-2321.2004.04.004 [34] 曲晓明, 王瑞江, 辛洪波, 等, 2009. 西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学. 地球化学, 38(6): 523-535. doi: 10.3321/j.issn:0379-1726.2009.06.002