224Ra in the Seawater of the East China Sea
-
摘要: 用锰纤维富集—射气法测量了东海水体中的224Ra, 研究了东海夏季和冬季水体中224Ra的水平与垂直分布, 夏季224Ra比活度为<LLD~5.88Bq/m3, 平均值为0.85Bq/m3; 冬季为<LLD~7.50Bq/m3, 平均值为0.72Bq/m3; 两个季节表层水224Ra的分布趋势大致相同, 随着离岸距离的增加, 水体中224Ra的活度很快降低, 高224Ra浓度海区位于离岸100km的范围内, 为0.5~7.5Bq/m3.黑潮流224Ra活度最低, <0.13Bq/m3.中部陆架水中的224Ra浓度为0.13~0.50Bq/m3.东海水体中的224Ra呈现为2种不同的垂直分布形式.利用一维稳态模型, 由水体中224Ra的水平分布计算出该海域的水平涡动扩散系数为(7.1~88.9)×106cm2/s, 垂直涡动扩散系数为2.18~163cm2/s.利用224Ra的垂直分布估算了浙江沿岸上升流的流速, 夏季为(8.4~13.3)×10-3cm/s, 冬季为(16.3~16.8)×10-3cm/s.Abstract: 224Ra in the seawater of the East China Sea (ECS) were measured using Mn-fiber adsorption—emanation method. The content level and distribution feature of 224Ra in sea water in summer and winter were studied. The 224Ra activities were < LLD~5.88Bq/m3 with an average of 0.85Bq/m3 in the summer and < LLD~7.50Bq/m3 with an average of 0.72Bq/m3 in the winter. Both seasons 224Ra in the surface water have similar distribution and decreased rapidly with the increasing distance from the coast. The high 224Ra activity at 0.5-7.5Bq/m3 is located within 30-100km offshore and the lowest activity at < 0.13Bq/m3 was in the Kuroshio Current. The 224Ra concentrations in the middle shelf are 0.13-0.5Bq/m3. The vertical distributions showed two different characteristics. The horizontal and vertical eddy diffusion coefficients calculated by the one-dimensional state model of 224Ra were (7.1-88.9)×106cm2/s and 2.18-163cm2/s, respectively. The upwelling rates off Zhejiang were calculated using 224Ra vertical distribution, which varied between (8.4-13.3)×10-3cm/s in the summer and (16.3-16.8)×10-3cm/s in the winter.
-
Key words:
- East China Sea /
- 224Ra /
- water mixing /
- upwelling rate /
- marine geology /
- geochemistry
-
表 1 夏季航次东海水体中的224Ra浓度
Table 1. 224Ra concentrations in the seawater of the East China Sea during summer cruise
站位 纬度(°N) 经度(°E) 离岸距离(km) 水深(m) 层位(m) 温度(℃) 盐度 浊度(FTU) 224Ra (Bq/m3) S0401 31.64 122.65 72.8 35 0 25.41 24.59 1.16 0.69±0.03 S0402 31.80 123.05 113.4 43 0 25.31 28.55 0.64 0.35±0.02 S0404 32.14 124.00 210.3 44 0 22.53 28.65 0.40 0.35±0.02 S0406 32.53 124.94 308.1 59 0 22.21 30.37 0.40 0.25±0.02 S0406 32.53 124.94 308.1 59 10 21.21 30.15 0.37 0.53±0.03 S0406 32.53 124.94 308.1 59 20 13.16 32.29 0.64 0.54±0.03 S0406 32.53 124.94 308.1 59 30 11.96 32.81 1.95 1.15±0.06 S0406 32.53 124.94 308.1 59 50 11.95 32.92 35.47 1.58±0.08 S0408 32.83 125.74 400.4 94 0 21.42 31.68 0.28 0.18±0.02 S0408 32.83 125.74 400.4 94 10 21.28 31.69 0.28 0.36±0.02 S0408 32.83 125.74 400.4 94 30 14.34 32.98 0.24 0.22±0.02 S0408 32.83 125.74 400.4 94 50 14.17 34.11 5.78 0.35±0.02 S0408 32.83 125.74 400.4 94 75 14.17 34.11 7.45 1.58±0.08 S0501 31.50 122.33 40.8 15 0 25.64 21.36 17.46 3.68±0.18 S0501 31.50 122.33 40.8 15 5 22.46 28.41 80.53 5.15±0.26 S0501 31.50 122.33 40.8 15 12 22.16 29.53 122.16 5.88±0.30 S0502 31.42 122.71 76.5 42 0 25.24 26.97 0.55 0.51±0.02 S0503 31.34 123.17 121.0 37 0 24.65 27.59 0.52 0.80±0.02 S0504 31.26 123.61 164.7 50 0 25.41 28.82 0.18 0.79±0.04 S0505 31.17 124.18 220.1 49 0 25.91 27.98 0.31 0.43±0.02 S0506 31.06 124.72 272.7 51 0 25.16 28.07 0.67 0.41±0.02 S0508 30.84 125.86 368.4 75 0 22.08 32.45 0.70 0.12±0.01 S0508 30.84 125.86 368.4 75 10 21.60 32.62 0.61 0.31±0.02 S0508 30.84 125.86 368.4 75 30 20.68 32.70 0.55 0.24±0.02 S0508 30.84 125.86 368.4 75 50 17.52 33.51 6.11 0.43±0.02 S0508 30.84 125.86 368.4 75 65 17.41 33.58 21.07 1.63±0.08 S0702 29.21 122.46 54.9 56 0 24.34 29.99 1.56 1.86±0.08 S0703 29.10 122.64 76.6 55 0 24.45 31.20 1.84 1.01±0.05 S0703 29.10 122.64 76.6 55 10 23.68 31.50 1.54 0.81±0.04 S0703 29.10 122.64 76.6 55 20 20.07 34.31 0.61 0.84±0.04 S0703 29.10 122.64 76.6 55 30 19.82 34.39 2.02 0.94±0.05 S0703 29.10 122.64 76.6 55 50 19.82 34.39 3.01 1.51±0.07 S0705 28.91 123.09 124.6 70 0 25.82 32.36 0.89 0.56±0.03 S0705 28.91 123.09 124.6 70 10 25.82 32.37 0.95 0.62±0.03 S0705 28.91 123.09 124.6 70 30 24.95 34.08 0.64 0.45±0.03 S0705 28.91 123.09 124.6 70 50 20.08 34.37 4.18 0.40±0.02 S0705 28.91 123.09 124.6 70 64 19.98 34.38 4.95 1.29±0.07 S0707 28.52 123.78 204.8 78.6 0 27.95 32.89 0.21 0.29±0.01 S0708 28.36 124.24 252.5 96 0 28.00 31.97 0.24 0.78±0.04 S0708 28.36 124.24 252.5 96 10 28.00 31.96 0.24 0.32±0.02 S0708 28.36 124.24 252.5 96 30 24.56 33.99 0.24 0.01±0.01 S0708 28.36 124.24 252.5 96 50 23.91 34.09 0.18 <LLD S0708 28.36 124.24 252.5 96 65 23.48 34.05 0.15 0.25±0.01 S0708 28.36 124.24 252.5 96 75 19.94 34.35 0.70 1.04±0.05 S0801 27.87 121.25 33.3 18 0 24.41 30.22 5.50 2.47±0.13 S0802 27.75 121.45 55.3 29 0 26.69 31.66 2.53 2.28±0.11 S0804 27.51 121.94 110.1 78 0 26.91 32.82 0.37 0.28±0.01 S0806 27.24 122.48 172.4 98 0 28.51 34.44 0.95 0.14±0.01 S0901 27.08 122.83 211.4 110 0 29.15 33.36 0.18 0.22±0.01 S0903 26.49 122.99 0 28.66 34.15 0.15 0.12±0.01 S0905 25.84 123.15 0 29.58 34.29 0.09 0.25±0.01 S1002 26.72 120.78 57.2 50 0 25.45 32.22 0.98 1.39±0.07 S1003 26.59 121.00 83.1 67 0 27.30 31.62 0.76 0.84±0.11 S1004 26.38 121.30 120.5 79 0 28.18 33.07 8.42 0.51±0.04 S1004 26.38 121.30 120.5 79 10 26.22 32.97 8.43 0.20±0.02 S1004 26.38 121.30 120.5 79 30 25.76 33.21 8.42 0.33±0.03 S1004 26.38 121.30 120.5 79 50 24.91 33.70 1.02 0.58±0.03 S1004 26.38 121.30 120.5 79 60 24.61 34.02 2.15 0.84±0.04 S1004 26.38 121.30 120.5 79 75 24.59 34.02 4.73 1.00±0.05 S1006 25.98 121.93 199.1 110 0 28.65 33.08 0.16 0.21±0.01 S1008 25.55 122.62 281.5 815 0 28.11 33.56 6.06 0.32±0.02 S1008 25.55 122.62 281.5 815 10 27.15 33.65 5.49 0.17±0.01 S1008 25.55 122.62 281.5 815 30 25.51 33.93 5.68 0.19±0.01 S1008 25.55 122.62 281.5 815 50 24.37 34.08 5.43 0.17±0.01 1010 25.19 123.32 360.5 1769 0 29.58 34.29 0.09 0.09±0.01 范围值 111.95~29.58 21.36~34.44 0.09~122.16 <LLD ~5.88 平均值 23.45 32.05 6.13 0.85 表 2 冬季航次东海水体中的224Ra浓度
Table 2. 224Ra concentrations in the seawater of the East China Sea during winter cruise
站位 纬度(°N) 经度(°E) 离岸距离(km) 水深(m) 层位(m) 温度(℃) 盐度 浊度(FTU) 224Ra (Bq/m3) W0402 31.78 123.05 113.4 41 0 10.64 32.51 6.96 1.43±0.14 W0404 32.12 124.00 210.3 45 0 9.89 32.23 4.64 0.47±0.05 W0406 32.53 124.93 308.1 58 0 12.49 33.98 5.86 1.28±0.11 W0408 32.87 125.83 400.4 101 0 15.87 34.35 1.34 0.38±0.03 W0501 31.50 122.33 40.8 15 0 8.24 29.79 53.36 7.50±0.62 W0502 31.42 122.70 76.5 41 0 14.5 33.89 6.84 0.50±0.04 W0503 31.34 123.16 121.0 40 0 12.97 33.43 5.62 0.41±0.03 W0504 31.26 123.61 164.7 51 0 13.5 33.60 3.05 0.37±0.05 W0505 31.16 124.18 220.1 47 0 13.24 33.54 5.86 0.81±0.07 W0506 31.06 124.72 272.7 51 0 13.53 33.64 8.67 0.71±0.07 W0508 30.84 125.69 368.4 76 0 15.64 33.98 4.88 0.31±0.03 W0508 30.84 125.69 368.4 76 10 15.64 33.98 5.13 0.34±0.04 W0508 30.84 125.69 368.4 76 20 15.65 33.98 5.74 0.29±0.05 W0508 30.84 125.69 368.4 76 30 15.66 33.98 5.98 0.39±0.06 W0508 30.84 125.69 368.4 76 40 15.66 33.98 5.98 0.60±0.07 W0508 30.84 125.69 368.4 76 50 15.66 33.98 5.98 1.01±0.09 W0508 30.84 125.69 368.4 76 69 15.69 34.00 6.72 1.22±0.08 W0510 30.64 126.94 489.9 101 0 17.44 34.19 0.37 0.16±0.01 W0512 30.44 127.96 590.2 404 0 19.03 34.59 0.13±0.02 W0513 30.33 128.62 654.7 854 0 18.45 34.56 <LLD W0604 31.96 126.94 114 0 17.86 34.49 0.12 0.10±0.01 W0606 31.39 127.62 131 0 18.14 34.47 0.08±0.01 W0608 30.83 128.21 517 0 18.83 34.60 0.07±0.01 W0701 29.34 122.25 30.0 16 0 9.32 28.72 217.3 5.29±0.51 W0703 29.07 122.62 76.6 53 0 13.37 33.73 3.3 0.41±0.04 W0703 29.07 122.62 76.6 53 10 13.36 33.73 3.18 0.25±0.02 W0703 29.07 122.62 76.6 53 20 13.43 33.74 3.42 0.46±0.05 W0703 29.07 122.62 76.6 53 30 13.55 33.79 3.54 0.56±0.06 W0703 29.07 122.62 76.6 53 40 13.63 33.83 3.85 0.58±0.05 W0703 29.07 122.62 76.6 53 50 13.72 33.86 4.15 0.67±0.06 W0705 28.91 123.09 124.6 69 0 16.17 34.57 1.59 0.43±0.04 W0708 28.36 124.24 252.5 97 0 17.32 34.51 0.98 0.20±0.02 W0710 27.91 125.16 355.8 107 0 18.61 34.66 0.86 0.25±0.03 W0712 27.46 126.12 462.8 820 0 22.09 34.68 0.12±0.02 W0802 27.75 121.44 55.3 29 0 11.48 30.78 3.05 1.06±0.11 W0804 27.48 121.91 110.1 79 0 16.85 33.70 0.49 0.50±0.05 W0806 27.24 122.48 172.4 95 0 19.61 34.40 0.12 0.14±0.01 W0901 27.08 122.83 211.4 111 0 19.36 34.65 0.12 0.17±0.02 W1002 26.72 120.78 57.2 52 0 11.85 30.87 1.59 0.98±0.09 W1004 26.38 121.30 120.5 80 0 16.11 33.18 0.61 0.18±0.01 W1004 26.38 121.30 120.5 80 10 15.94 33.18 0.73 0.23±0.01 W1004 26.38 121.30 120.5 80 20 15.80 33.18 1.90 0.24±0.02 W1004 26.38 121.30 120.5 80 30 15.75 33.16 2.81 0.31±0.03 W1004 26.38 121.30 120.5 80 40 15.70 33.16 1.89 0.82±0.07 W1004 26.38 121.30 120.5 80 50 15.75 33.16 2.69 0.92±0.08 W1006 25.98 121.95 199.1 104 0 21.75 34.57 0.28±0.03 W1008 25.55 122.62 281.5 750 0 24.35 34.47 0.03±0.00 W1010 25.18 123.29 360.5 1770 0 24.57 34.66 0.03±0.01 范围值 8.24~24.57 28.72~34.68 0.12~217.34 < LLD~7.50 平均值 15.70 33.60 10.03 0.72 表 3 东海水体的水平涡动扩散系数(106cm2/s)
Table 3. Horizontal eddy diffusion coefficients of the East China Sea
断面 夏季 冬季 04 21.8 42.2 05 7.1 17.9 07 27.8 31.5 08 24.0 72.4 10 88.9 30.5 范围值 7.1~88.9 17.9~72.4 平均值 33.9 38.9 表 4 东海水体的垂直涡动扩散系数(cm2/s)
Table 4. Vertical eddy diffusion coefficients of the East China Sea
站位 夏季 冬季 0406 16.9 0408 28.0 0501 15.3 0508 22.0 22.5 0703 84.6 163.0 0705 3.14 0708 2.18 1004 32.4 18.0 -
[1] Bollinger, M.S., Moore, W.S., 1984. Radium fluxes from a salt marsh. Nature, 309: 444-446. doi: 10.1038/309444a0 [2] Chen, X.B., Huang, Y.P., Xie, Y.Z., et al., 1999. Distribution of 224Ra in the Jiulong Estuarine waters and its application. Acta Oceanologica Sinica, 21(4): 54-61 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=3581451 [3] Chen, X.B., Xie, Y.Z., Huang, Y.P., et al., 1998. Profiles of 224Ra in the Xiamen bay waters and its application. Acta Oceanologica Sinica, 20(6): 50-57 (in Chinese with English abstract). http://www.hyxb.org.cn/aos/ch/reader/view_abstract.aspx?file_no=19980607 [4] Cochran, J.K., 1992. The oceanic chemistry of the U- and Th-series nuclides in the ocean. In: Ivanovich, M.I., Harmon, R.S., eds., Uranium-series disequilibrium: application to earth, marine, and environmental science (Second edition). Clarendon Press, Oxford, 364-375. [5] Colbert, S.L., Hammond, D.E., 2007. Temporal and spatial variability of radium in the coastal ocean and its impact on computation of nearshore cross-shelf mixing rates. Continental Shelf Research, 27(10-11): 1477-1500. doi: 10.1016/j.csr.2007.01.003 [6] Elsinger, R.J., Moore, W.S., 1983. 224Ra, 228Ra, and 226Ra in Winyah bay and Delaware bay. Earth and Planetary Science Letters, 64(3): 430-436. doi: 10.1016/0012-821X(83)90103-6 [7] Hougham, A.L., Moran, S.B., 2007. Water mass ages of coastal ponds estimated using 223Ra and 224Ra as tracers. Marine Chemistry, 105(3-4): 194-207. doi: 10.1016/j.marchem.2007.01.013 [8] Hu, D.X., Lü, L.H., Xiong, Q.C., et al., 1980. Studies on the upwelling of Zhejiang. Chinese Science Bulletin, (3): 131-133 (in Chinese). http://www.researchgate.net/publication/313708033_Studies_on_the_upwelling_off_Zhejiang [9] Hu, D.X., Yang, Z.S., 2001. The key processes for marine fluxes of the East China Sea. China Ocean Press, Bejing (in Chinese). [10] Hu, M.N., Zhao, C.F., 2008. Upwelling in Zhejiang coastal areas during summer detected by satellite observations. Journal of Remote Sensing, 12(2): 297-304 (in Chinese with English abstract). http://www.oalib.com/paper/1470423 [11] Huang, Y.P., Xie, Y.Z., Chen, X.B., et al., 2001. A new method for rapid concentration and determination of 224Ra in seawater. Journal of Xiamen University (Natural Science), 40(3): 699-705 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDZK200103010.htm [12] Huang, Z.K., Yu, G.Y., Luo, Y.Y., et al., 1996. Numerical modeling of tide induced upwelling in coastal areas of the East China Sea. Journal of Ocean University of Qingdao, 26(4): 405-412 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QDHY604.002.htm [13] Iseki, K., Okamura, K., Kiyomoto, K., 2003. Seasonality and composition of downward particulate fluxes at the continental shelf and Okinawa Trough in the East China Sea. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 50(2): 457-473. doi:10.1016/ S0967-0645(02)00468-X [14] Krest, J.M., Harvey, J.W., 2003. Using natural distributions of short-lived radium isotopes to quantify groundwater discharge and recharge. Limnology and Oceanography, 48(1): 290-298. doi: 10.4319/lo.2003.48.1.0290 [15] Krishnaswami, S., 2001. Uranium thorium series isotopes in ocean profiles. In: Steele, J.H., Thorpe, S.A., Turekian, K.K., eds., Encyclopedia of ocean sciences. Academic Press, London, 3146-3156. [16] Levy, D.M., Moore, W.S., 1985. 224Ra in continental shelf waters. Earth and Planetary Science Letters, 73(2-4): 226-230. doi: 10.1016/0012-821X(85)90071-8 [17] Liu, G.S., Yang, W.F., Jia, C.X., et al., 2004. Rapid concentration in-situ and γ spectrum analysis of radium isotopes in large volume seawater. Nuclear Techniques, 27(2): 116-121 (in Chinese with English abstract). [18] Liu, X.B., Su, J.L., 1991. The numerical study on the upwelling of Zhejiang and the coastal front. Acta Oceanologica Sinica, 13(3): 305-314 (in Chinese). [19] Luo, Y.Y., Yu, G.Y., 1998. Numerical studies of wind and TWC driven upwelling in coastal areas of the East China Sea. Journal Ocean University of Qingdao (Natural Science), 28(4): 536-542 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-QDHY804.003.htm [20] Mao, H.L., Ren, Y.W., Wan, G.M., 1964. A preliminary investigation on the application of using T-S diagrams for a quantitative analysis of the watermasses in the shallow water area. Oceanologia et Limnologia Sinnica, 6(1): 1-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYFZ196401000.htm [21] Men, W., Liu, G.S., Chen, Z.G., et al., 2010. Progress of radium isotopes applications to oceanography research. Advances in Earth Science, 25(1): 33-42 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201001008.htm [22] Moore, W.S., 2000. Determining coastal mixing rates using radium isotopes. Continental Shelf Research, 20(15): 1993-2007. doi: 10.1016/S0278-4343(00)00054-6 [23] Moore, W.S., Todd, J.F., 1993. Radium isotopes in the Orinoco Estuary and eastern Caribbean Sea. Journal of Geophysical Research, 98(C2): 2233-2244. doi: 10.1029/92JC02760 [24] Nozaki, Y., Kasemsupaya, V., Tsubota, H., 1989. Mean residence time of the shelf water in the East China and the Yellow Seas determined by 228Ra/226Ra measurements. Geophysical Research Letters, 16(11): 1297-1300. doi: 10.1029/GL016i011p01297 [25] Nozaki, Y., Tsubota, H., Kasemsupaya, V., et al., 1991. Residence times of surface water and particle-reactive 210Pb and 210Po in the East China and Yellow seas. Geochimica et Cosmochimica Acta, 55(5): 1265-1272. doi: 10.1016/0016-7037(91)90305-O [26] Pan, Y.Q., Xu, D.R., Xu, J.P., 1985. The front structure, variation and causes of upwelling off Zhejiang. Acta Oceanologica Sinica, 7(4): 401-411 (in Chinese). [27] Rama., Todd, J.F., Butts, J.L., et al., 1987. A new method for the rapid measurement of 224Ra in the natural waters. Marine Chemistry, 22(1): 43-54. doi: 10.1016/0304-4203(87)90047-8 [28] Smith, M.R., Lautensleger, A.W., Laul, J.C., 1988. A new method for the determination of radium-228, thorium-228, and radium-224 in groundwaters via thoron (radon-220). Journal of Radioanalytical and Nuclear Chemistry, 123(1): 107-119. doi: 10.1007/BF02036384 [29] Sun, X.P., 2006. Regional marine in China offshore. China Ocean Press, Beijing, 106-109 (in Chinese). [30] Torgersen, T., Turekian, K.K., Turekian, V.C., et al., 1996. 224Ra distribution in surface and deep water of Long Island Sound: sources and horizontal transport rates. Continental Shelf Research, 16 (12): 1545-1559. doi: 10.1016/0278-4343(96)00003-9 [31] Webster, I.T., Hancock, G.J., Murray, A.S., et al., 1994. Use of radium isotopes to examine pore-water exchange in an estuary. Limnology and Oceanography, 39(8): 1917-1927. doi: 10.4219/lo.1994.39.8.1917 [32] Webster, I.T., Hancock, G.J., Murray, A.S., 1995. Modelling the effect of salinity on radium desorption from sediments. Geochimica et Cosmochimica Acta, 59(12): 2469-2476. doi: 10.1016/0016-7037(95)00141-7 [33] Zhang, J., 2002. Biogeochemistry of Chinese estuarine and coastal waters: nutrients, trace metals and biomarkers. Regional Environmental Change, 3(1-3): 65-76. doi: 10.1007/s10113-001-0039-3 [34] Zhang, L., Liu, Z., Zhang, J., et al., 2007. Reevaluation of mixing among multiple water masses in the shelf: an example from the East China Sea. Continental Shelf Research, 27(15): 1969-1979. doi: 10.1016/j.csr.2007.04.002 [35] 陈性保, 黄奕普, 谢永臻, 等, 1999. 九龙江河口区水体中224Ra的分布及其应用. 海洋学报, 21(4): 54-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC199904007.htm [36] 陈性保, 谢永臻, 黄奕普, 等, 1998. 厦门湾海水中的224Ra的深度分布特征及其应用. 海洋学报, 20(6): 50-57. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC199806006.htm [37] 胡敦欣, 吕良洪, 熊庆成, 等, 1980. 关于浙江沿岸上升流的研究. 科学通报, (3): 131-133. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198003009.htm [38] 胡敦欣, 杨作升, 2001. 东海海洋通量关键过程. 北京: 海洋出版社. [39] 胡明娜, 赵朝方, 2008. 浙江近海夏季上升流的遥感观测与分析. 遥感学报, 12(2): 297-304. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200802015.htm [40] 黄奕普, 谢永臻, 陈性保, 等, 2001. 海水中224Ra快速富集和测定的新方法. 厦门大学学报(自然科学版), 40(3): 699-705. doi: 10.3321/j.issn:0438-0479.2001.03.011 [41] 黄祖珂, 俞光耀, 罗义勇, 等, 1996. 东海沿岸潮致上升流的数值模拟. 青岛海洋大学学报, 26(4): 405-412. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY604.002.htm [42] 刘广山, 杨伟锋, 贾成霞, 等, 2004. 大体积海水镭同位素现场快速富集与γ谱直接测定. 核技术, 27(2): 116-121. doi: 10.3321/j.issn:0253-3219.2004.02.009 [43] 刘先炳, 苏纪兰, 1991. 浙江沿岸上升流和沿岸锋面的数值研究. 海洋学报, 13(3): 305-314. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC199103001.htm [44] 罗义勇, 俞光耀, 1998. 风和台湾暖流引起东海沿岸上升流数值计算. 青岛海洋大学学报(自然科学版), 28(4): 536-542. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY804.003.htm [45] 毛汉礼, 任允武, 万国铭, 1964. 应用T-S关系定量地分析浅海水团的初步研究. 海洋与湖沼, 6(1): 1-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ196401000.htm [46] 门武, 刘广山, 陈志刚, 等, 2010. 镭同位素在海洋学研究中的应用及进展. 地球科学进展, 25(1): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201001008.htm [47] 潘玉球, 徐端蓉, 许建平, 1985. 浙江沿岸上升流区的锋面结构、变化及其原因. 海洋学报, 7(4): 401-411. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC198504000.htm [48] 孙湘平, 2006. 中国近海区域海洋. 北京: 海洋出版社, 106-109.