Exploration of the Buried Fault in Front of Yuwang Mountain and Its Neomovement's Epoch in Ningbo, Zhejiang Province
-
摘要: 利用浅层地震勘探资料和钻探资料, 揭示出宁波育王山山前隐伏断层的存在.8条浅层地震勘探剖面资料显示, 育王山山前隐伏断层距山前600~1200m, 断错盆地基底面, 可能向上延伸到盆地底部的第四纪地层中.用光释光测年和孢粉分析方法, 对钱家钻孔中的第四纪地层进行了年代确定, 认为大楔盆地西缘盆地内的第四纪地层为晚更新世以来的堆积.钻探资料显示, 钱家和岭南钻孔组中均揭露出侏罗纪凝灰岩中的断层破碎带和断层面.其中, 钱家钻孔联合剖面中断层破碎带宽8.5m, 岭南钻孔联合地质剖面中发现2条断层, 其中一条断层的破碎带宽5m.岭南DQZK6孔埋深35m的上更新统下段黏土中断层面倾角70°, 擦痕近垂直; 钱家QJZK8孔中, 埋深约35m的黏土层中断层面倾角也为70°.断层晚更新世早期的垂直活动速率为0.034~0.046mm/a, 属于晚更新世早期弱活动断层.上断点埋深约35m, 断层的错动不会对地面建筑物形成直接破坏.Abstract: Based on the data of shallow seismic survey and drilling geological profiles, a buried fault has been found. With eight shallow seismic profiles, it is found that the buried fault is 600m to 1200m apart from the front of Yuwangshan in front of Yuwangshan Mountain, cutting the floor of Daxie basin, likely extending into Quaternary strata at the basin bottom. Using OSL dating and sporo-pollen analysis, we study the Quaternary sediment in the bore holes of Qianjia village, and suggest that the Quaternary sediment is late Pleistocene stratum at western margin in Daxie basin. On the composite drilling geological section in Qianjia village, fault fracture zone is 8.5m in width in Jurassic tuff. On the drilling geological section of Liangnan village, we find two faults in Jurassic tuff, one of which is 5m in width. At the depth of 35m in Liangnan DQZK6 drilling hole, fault plane obliquity is 70° in clay, with its slickenside approximately upright. In Qianjia QJZK8 bore hole, fault plane obliquity is also 70° at depth of 35m in clay. Active rate of the fault is 0.034-0.046mm/a in vertical direction, and it is a weak active fault in early period of late Pleistocene. From the exploration result, we obtain the depth of the upper break point of the buried fault as 35m in the front of Yuwang Mountain. The active fault will not directly destroy buildings on ground surface along the fault zone.
-
Key words:
- buried fault /
- shallow seismic survey /
- bore exploration /
- activity structure
-
图 2 浅层地震勘探测线和钻探布置
1.全新世堆积;2.晚更新世坡洪积物;3.侏罗纪凝灰岩;4.燕山期花岗岩;5.隐伏断层;6.走滑断层;7.正断层;8.晚更新世断层;9.早-中更新世断层;10.浅层地震测线、编号和断点;11.钻探联合剖面位置;F1.算山-曹隘断层带;F2-1.育王山山前断层;F2-2.育王山山前隐伏断层;F3.北仑-育王断层;F4.北仑-奉化断层;图件据中国地震局地质研究所,2007.宁波市目标区活断层综合分析与制图
Fig. 2. The sites of shallow seismic survey lines and the position of composite drilling section
图 6 岭南钻探联合地质剖面(图例及说明同图 5)
Fig. 6. The composite drilling geological section in Lingnan
表 1 各测线探测参数
Table 1. The parameters for sallow seismic exploration
测线编号 观测系统 记录长度(ms) 震源扫描频率(Hz) 采样间隔(ms) 接收道数 道间距(m) 偏移距(m) 覆盖次数 SJ 96 1 -36 12 1024 炸药 0.5 QJ 96 1 -40 12 1024 炸药 0.5 XF 96 1 -40 15 1024 30~220 0.5 CHK-1 96 1 12 15 1024 30~220 0.5 BS-2 96 1 -32 12 1024 炸药 0.5 GT-2 96 1 -32 12 1024 炸药 0.5 表 2 断点参数
Table 2. The schedule of fault's parameter on shallow seismic survey profiles
测线 名称 断点 编号 断点位 置(m) 上断点 深度(m) 推测断 距(m) 视倾向 断层 性质 判定断层的依据 可靠性 SJ Fp14 525 38 4~6 E 正断 Tg中断和Tg面 下的绕射波 可靠 QJ Fp15 877 57 2~3 E 正断 Tg中断、同相轴 紊乱、能量变弱 可靠 XF Fp16 127 59 2~4 E 正断 Tg中断和Tg面 下的绕射波 较可靠 CHK-1 Fp17 619 69 2~4 E 正断 Tg中断和Tg面下 的绕射波、能量变弱 较可靠 BS-2 Fp18 462 70 4~5 E 正断 Tg中断 一般 GT-2 Fp19 202 58 3~4 E 正断 Tg中断和Tg面 下的绕射波 较可靠 GT-2 Fp20 66 60 2~4 W 正断 Tg中断和Tg面 下的绕射波 一般 -
[1] Bureau of geology and mineral resources of Zhejiang Province, 1989. Regional geology of Zhejiang municipality. Geological Publishing House, Beijing (in Chinese). [2] Chen, J.G., Chen, C.G., Wang, L., et al., 1998. Earthquakes and neotectonics movement in Ningbo region. Acta Seismologica Sinica, 20(3): 285-294 (in Chinese with English abstract). [3] Cluf, L.S., 2004. Bridging the gap between earthquake science and enginering: the story of the trans-alaska pipe line performance during the Mw 7.9, 2002 earthquake. In: Proceedings of the Third International Conference on Contininental Earthquakes, ICCE, 63-68. [4] Deng, Q.D., Chen, L.C., Ran, Y.K., 2004. Quantitative studies and applications of active tectonics. Earth Science Frontiers, 11(4): 383-392 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DXQY200404006.htm [5] Deng, Q.D., Liu, B.C., Zhang, P.Z., et al., 1992. Research of active fault in evaluating engineering safety and assessing amount of displacement. In: Institute of Geology, China Earthquake Administration, ed., Research on active fault. Earthquake Press, Beijing, 236-246 (in Chinese). [6] Dolan, J.F., 1997. High-resolution seismic reflection profiling of the Santa Monica fault zone, west of Los Angeles, California. Geophysical Research Letters, 24(16): 2051-2054. doi: 10.1029/97GL01940 [7] Liu, J.Q., Liu, Q., 2000. Quaternary stratigraphy in China. Quaternary Sciences, 20(2): 129-141 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200002002.htm [8] Lu, H.F., He, Z.T., Zhao, J.X., et al., 2008. Quantitative analysis on activety of the Yuanmou fault in Late Quaternary. Earth Science—Journal of China University of Geosciences, 33(6): 852-860 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.102 [9] Ma, X.Y., 1989. Lithospheric dynamics atlas of China. China Cartographic Publishing House, Beijing (in Chinese). [10] Ministry of Construction P.R. China, General Administration of Quality Supervision, Inspection and Quarantine P.R. China, 2001. Code for seismic design of buildings(GB50011-2001). China Architecture & Building Press, Beijing (in Chinese). [11] Qu, G.S., Hao, C.T., Chen, G.G., 1992. A study on the segmentation and tectonic stress field of the Zhenhai-Wenzhou extending faults in Cenozoic. Journal of Seismology, 2: 11-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXK199202001.htm [12] Ran, Y.K., Chen, L.C., 2004. Active tectonic research for seismic safety evaluation of long line engineering sites in China. Seismology and Geology, 26(4): 733-741 (in Chinese with English abstract). [13] Ran, Y.K., Deng, Q.D., 1999. History, status and trend about the research of paleoseismology. Chinese Science Bulletin, 44(1): 12-20 (in Chinese). doi: 10.1360/csb1999-44-1-12 [14] Ran, Y.K., Li, J.B., Min, W., et al., 2005. Active tectonics along site and neighborhood of west route of south-to-north water transfer project in China. Chinese Journal of Rock Mechanics and Engineering, 24(20): 3664-3672 (in Chinese with English abstract). [15] Robert, B.H., Cyntyia, L.P., Jeffrey, E.C., 2000. Shallow seismic reflection profiling over Brevard Zone South Caroline. Geophysics, 65(5): 1388-1401. doi: 10.1190/1.1444829 [16] Schwartz, D.P., Coppersmith, K.J., 1984. Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas fault zones. Journal of Geophysical Research, 89(B7): 5681-5698. doi: 10.1029/JB089iB07p05681 [17] Song, F.M., Chen, X.C., Yang, X.P., et al., 2008. Geometrical structure and neomovement's epoch of fault in front of Mountain Yuwang in Ningbo, Zhejiang. Resources Survey and environment, 29(3): 177-186 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HSDZ200803003.htm [18] The National Standards Compilation Group of People's Republic of China, 1999. Code for seismic safety evaluation of engineering sites (GB17741-1999). Standards Press of China, Beijing (in Chinese). [19] Wallace, R.E., 1970. Earthquake recurrence intervals on the San Andreas fault. Geological Society of America Bulletin, 81(10): 2875-2890. doi: 10.1130/0016-7606(1970)81[2875:ERIOTS]2.0.CO;2 [20] Yeats, R.S., Pentice, C.S., 1996. Introduction to special section: paleoseismology. Journal of Geophysical Research, 101(B3): 5847-5853. doi: 10.1029/95JB03134 [21] Yin, G.M., Wang, X.L., Zhou, B.G., et al., 2005. The chronology of the first hard clay in Ningbo region. Seismology and Geology, 27(4): 548-555 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ200504002.htm [22] 陈家庚, 陈存国, 王里, 等, 1998. 宁波地区的地震与新构造运动. 地震学报, 20(3): 285-294. doi: 10.3321/j.issn:0253-3782.1998.03.009 [23] 邓起东, 陈立春, 冉勇康, 2004. 活动构造定量研究与应用. 地学前缘, 11(4): 383-392. doi: 10.3321/j.issn:1005-2321.2004.04.005 [24] 邓起东, 刘百篪, 张培震, 等, 1992. 活动断裂工程安全评价和位错量的定量评估. 见: 国家地震局地质研究所编. 活动断裂研究(2). 北京: 地震出版社, 236-246. [25] 刘嘉琪, 刘强, 2000. 中国第四纪地层. 第四纪研究, 20(2): 129-141. doi: 10.3321/j.issn:1001-7410.2000.02.003 [26] 卢海峰, 何仲太, 赵俊香, 等, 2008. 元谋断裂晚第四纪活动性定量分析. 地球科学——中国地质大学学报, 33(6): 852-860. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200806014.htm [27] 马杏垣, 1989. 中国岩石圈动力学图集. 北京: 中国地图出版社. [28] 曲国胜, 郝重涛, 陈国光, 1992. 镇海-温州断裂分段性及新生代构造应力场研究. 地震学刊, 2: 11-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK199202001.htm [29] 冉勇康, 陈立春, 2004. 中国长线工程场地地震安全性评价工作中的活动构造问题. 地震地质, 26(4): 733-741. doi: 10.3969/j.issn.0253-4967.2004.04.019 [30] 冉勇康, 邓起东, 1999. 古地震学研究的历史、现状和发展趋势. 科学通报, 44(1): 12-20. doi: 10.3321/j.issn:0023-074X.1999.01.003 [31] 冉勇康, 李建彪, 闵伟, 等, 2005. 南水北调西线工程区及邻域的活动构造. 岩石力学与工程学报, 24(20): 3664-3672. doi: 10.3321/j.issn:1000-6915.2005.20.010 [32] 宋方敏, 陈献程, 杨晓平, 等, 2008. 浙江宁波育王山山前断层几何结构及新活动时代. 资源调查与环境, 29(3): 177-186. doi: 10.3969/j.issn.1671-4814.2008.03.004 [33] 尹功明, 王旭龙, 周本刚, 等, 2005. 宁波地区第一硬土层的年代. 地震地质, 27(4): 548-555. doi: 10.3969/j.issn.0253-4967.2005.04.003 [34] 浙江省地质矿产局, 1989. 浙江省区域地质志. 北京: 地质出版社. [35] 中华人民共和国国家标准编写组, 1999. 工程场地地震安全性评价技术规范(GB17741-1999). 北京: 中国标准出版社. [36] 中华人民共和国建设部, 国家质量监督检验检疫总局, 2001. 建筑抗震设计规范(GB50011-2001). 北京: 中国建筑工业出版社.