• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南沙海槽前陆盆地热流变结构

    马辉 许鹤华 施小斌 陈爱华 刘唐伟

    马辉, 许鹤华, 施小斌, 陈爱华, 刘唐伟, 2011. 南沙海槽前陆盆地热流变结构. 地球科学, 36(5): 939-948. doi: 10.3799/dqkx.2011.099
    引用本文: 马辉, 许鹤华, 施小斌, 陈爱华, 刘唐伟, 2011. 南沙海槽前陆盆地热流变结构. 地球科学, 36(5): 939-948. doi: 10.3799/dqkx.2011.099
    MA Hui, XU He-hua, SHI Xiao-bin, CHEN Ai-hua, LIU Tang-wei, 2011. Lithospheric Thermal-Rheological Structure of Nansha Trough Foreland Basin in South China Sea. Earth Science, 36(5): 939-948. doi: 10.3799/dqkx.2011.099
    Citation: MA Hui, XU He-hua, SHI Xiao-bin, CHEN Ai-hua, LIU Tang-wei, 2011. Lithospheric Thermal-Rheological Structure of Nansha Trough Foreland Basin in South China Sea. Earth Science, 36(5): 939-948. doi: 10.3799/dqkx.2011.099

    南沙海槽前陆盆地热流变结构

    doi: 10.3799/dqkx.2011.099
    基金项目: 

    中国科学院知识创新工程重要方向项目群项目 KZCX2-YW-Q05-04

    国家重点基础研究发展计划“973”项目 2007CB41170405

    国家高技术研究发展计划“863”课题 2008AA09Z306

    详细信息
      作者简介:

      马辉(1987—), 男, 硕士研究生, 从事盆地构造分析及地球动力学演化数值模拟研究

      通讯作者:

      许鹤华, E-mail: xhhcn@scsio.ac.cn

    • 中图分类号: P738.6

    Lithospheric Thermal-Rheological Structure of Nansha Trough Foreland Basin in South China Sea

    • 摘要: 为了研究南沙海槽前陆盆地深部岩石圈的热力学性质, 在前人所做的地质与地球物理研究工作的基础上, 结合各种岩石热力学流变参数, 采用有限元分析方法, 计算了现今构造逆冲之后和中中新世—全新世逆冲过程活跃时两种状态下的深部岩石圈二维温度场和流变结构.模拟计算表明, 南沙海槽前陆盆地地幔热流贡献达60%~70%, 大地热流受深部地幔控制.逆冲推覆构造作用使盆地逆冲推覆带地表热流显著升高了15%~25%, 达到70~75mW/m2.盆地沉积层温度在200℃以内, 莫霍面温度420~500℃, 地壳地温梯度25~30℃/km, 盆地热岩石圈厚度为80km左右, 横向上变化幅度不大.南沙海槽前陆盆地深部岩石圈流变性质具有明显的分层特性, 为典型的“三明治”结构.盆地岩石圈综合强度由南沙海槽向逆冲推覆带方向呈下降趋势, 盆地力学岩石圈厚度50km左右, 有效弹性厚度为30~32km.通过模拟盆地深部岩石圈热流变结构, 揭示了盆地深部岩石圈具有强地幔、弱地壳的流变学特征, 表现为高强度块体.同时南沙海域地震活动与深部岩石圈热结构、热活动和岩石圈综合强度密切相关.地壳内热构造活动弱、岩石圈强度大可能是区域地震很少发生的重要原因.

       

    • 图  1  南沙海槽前陆盆地地理位置、区域构造及热流测点分布(构造和BGR01-07测线根据Franke et al., 2008; Hesse et al., 2010修改)

      Fig.  1.  Sketch map of tectonic and topographic map of Nansha trough foreland basin in South China Sea

      图  2  南沙海槽前陆盆地94N05测线的剖面地壳结构

      图中数字为岩石圈各层地震P波速度, 单位为km/s, 波速据苏达权等(1996)Franke et al. (2008)修改

      Fig.  2.  Crust structure of line 94N05 profile of Nansha trough foreland basin

      图  3  94N05测线的剖面网格化(剖面位置见图 1)

      Fig.  3.  Map of grid of line 94N05 profile

      图  4  岩石圈现今静态(a) 和考虑中中新世—全新世逆冲推覆作用后(b) 的温度场图

      图中黑色虚线为热流值; 黑色实线为温度界面, 单位为℃; 白色实线代表逆冲断层; 白色点线是岩石圈层圈界面; 白色箭头代表逆冲断层活动方向

      Fig.  4.  Temperature fields of deep lithosphere including static (a) and thrusting in process (b)

      图  5  现今静态的(上) 和逆冲推覆过程中(下) 的岩石圈流变结构

      Fig.  5.  Rheological structures of deep lithosphere including static (upper) and thrusting in process (lower)

      表  1  热导率相关参数K0C

      Table  1.   Parameter values K0 and C associated with the thermal conductivity

      层位 K0 (W·m-1K-1) C (K-1)
      沉积层 2.0 0
      UTK层 3.0 1.5×10-3
      下地壳 3.0 1.5×10-3
      岩石圈上地幔 2.5 -4.0×10-3
      注: UTK层、下地壳、岩石圈上地幔的K0按文献Liu et al. (2005).
      下载: 导出CSV

      表  2  岩石圈各层流变参数(据Fernàndez and Ranalli, 1997)

      Table  2.   Flow law parameters of lithosphere

      层位 材料 A (MPa-n·s-1) n Q (kJ·mol-1)
      上地壳(沉积层) 石英岩 1×10-6 2.8 150
      下地壳 石英闪长岩 3.2×10-3 3.2 270
      岩石圈上地幔 橄榄岩 3.2×104 3.5 535
      下载: 导出CSV
    • [1] An, M. J., Shi, Y. L., 2007. Three-dimensional temperature field of Chinese continental crust and upper mantle. Science in China (Ser. D), 37(6): 736-745 (in Chinese).
      [2] Burov, E. B., 2010. The equivalent elastic thickness(Te), seismicity and the long-term rheology of continental lithosphere: time to burn-out"crème brûlée"? Tectonophysics, 484(1-4): 4-26. doi: 10.1016/j.tecto.2009.06.013.
      [3] Burov, E. B., Diament, M., 1992. Flexure of the continental lithosphere with multilayered rheology. Geophysical Journal International, 109(2): 449-468. doi: 10.1111/j.1365-246X.1992.tb00107.x.
      [4] Burov, E. B., Diament, M., 1995. The effective elastic thickness(Te)of continental lithosphere: what does it really mean? Journal of Geophysical Research, 100(B3): 3905-3927. doi: 10.1029/94JB02770.
      [5] Cloetingh, S., Burov, E. B., 1996. Thermomechanical structure of European continental lithosphere: constraints from rheological profiles and EET estimates. Geophysical Journal International, 124(3): 695-723. doi: 10.1111/j.1365-246X.1996.tb05633.x.
      [6] Fernàndez, M., Ranalli, G., 1997. The role of rheology in extensional basin formation modelling. Tectonophysics, 282(1-4): 129-145. doi: 10.1016/S0040-1951(97)00216-3.
      [7] Franke, D., Barckhausen, U., Heyde, I., et al., 2008. Seismic images of a collision zone offshore NW Sabah/Borneo. Marine and Petroleum Geology, 25(7): 606-624. doi: 10.1016/j.marpetgeo.2007.11.004.
      [8] Fu, Y. T., Li, J. L., Zhou, H., et al., 2000. Comments on the effective elastic thickness of continental lithosphere. Geological Review, 46(2): 149-159 (in Chinese with English abstract). http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=geology&resid=28/6/495
      [9] Hall, R., 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of AsianEarth Sciences, 20(4): 353-431. doi: 10.1016/S1367-9120(01)00069-4.
      [10] Hesse, S., Back, S., Franke, D., 2010. The structural evolution of folds in a deepwater fold and thrust belt: a case studyfrom the Sabah continental margin offshore NW Borneo, SE Asia. Marine and Petroleum Geology, 27(2): 442-454. doi: 10.1016/j.marpetgeo.2009.09.004.
      [11] Hutchison, C. S., 2004. Marginal basin evolution: the southern South China Sea. Marine and Petroleum Geology, 21(9): 1129-1148. doi: 10.1016/j.marpetgeo.2004.07.002.
      [12] Hutchison, C. S., 2010. The North-West Borneo trough. Marine Geology, 271(1-2): 32-43. doi: 10.1016/j.margeo.2010.01.007.
      [13] Lin, A., Watts, A. B., 2002. Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin. J. Geophys. Res., 107(B9): 2185, doi: 10.1029/2001JB000669.
      [14] Liu, S. W., Wang, L. S., Gong, Y. L., et al., 2005. Thermalrheological structure of the lithosphere beneath Jiyang depression: its implications for geodynamics. Science in China (Ser. D), 48(10): 1569-1584. doi: 10.1360/02yd0286.
      [15] Liu, S. W., Wang, L. S., Jia, C. Z., et al., 2008. Thermalrheological structure of continental lithosphere beneath major basins in central-western China: implications for foreland basin formation. Earth Science Frontiers, 15(3): 113-122 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200803009.htm
      [16] Maggi, A., Jackson, J. A., McKenzie, D., et al., 2000. Earth quake focal depths, effective elastic thickness, and the strength of the continental lithosphere. Geology, 28(6): 495-498. doi:10.1130/0091-7613(2000)28<495:EFDEET>2.0.CO;2.
      [17] McNutt, M., 1990. Flexure reveals great depth. Nature, 343: 596-597. doi: 10.1038/343596a0.
      [18] Morley, C., 2002. A tectonic model for the tertiary evolution of strike-slip faults and rift basins in SE Asia. Tectonophysics, 347(4): 189-215. doi: 10.1016/S0040-1951(02)00061-6.
      [19] Morley, C. K., 2009. Growth of folds in a deep-water setting. Geosphere, 5(2): 59-89. doi: 10.1130/GES00186.1.
      [20] Ou, X. G., Jin, Z. M., Xia, B., et al., 2006. Prediction of thermal conductivity of underground rocks from P-wavevelocity of ultrahigh-pressure metamorphic rocks. Earth Science—Journal of China University of Geosciences, 31(4): 564-568 (in Chinese with English abstract). http://www.researchgate.net/publication/288632071_Prediction_of_thermal_conductivity_of_underground_rocks_from_P-wave_velocity_of_ultrahigh-pressure_metamorphic_rocks
      [21] Ranalli, G., Murphy, D. C., 1987. Rheological stratificationof the lithosphere. Tectonophysics, 132(4): 281-295. doi: 10.1016/0040-1951(87)90348-9.
      [22] Shi, X. B., Qiu, X. L., Xia, K. Y., et al., 2003. Characteristics of surface heat flow in the South China Sea. Journal of Asian Earth Sciences, 22(3): 265-277. doi: 10.1016/S1367-9120(03)00059-2.
      [23] Shi, X. B., Zhou, D., Qiu, X. L., et al., 2002. Thermal andrheological structures of the Xisha trough, South China Sea. Tectonophysics, 351(4): 285-300. doi: 10.1016/S0040-1951(02)00162-2.
      [24] Shi, X. B., Zhou, D., Zhang, Y. X., 2000. Lithospheric thermal-rheological structures of the continental margin in the northern South China Sea. Chinese Science Bulletin, 45(22): 2107-2112. doi: 10.1007/BF03183537.
      [25] Simons, W. J. F., Socquet, A., Vigny, C., et al., 2007. A decade of GPS in Southeast Asia: resolving Sundaland motion and boundaries. Journal of Geophysical Research, 112: B06420, doi: 10.1029/2005JB003868.
      [26] Su, D. Q., Huang, C. L., Xia, K. Y., 1996. The crust in the NanSha trough. Scientic Geologica Sinica, 31(4): 410-415 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzkx199604009.htm
      [27] Toussaint, G., Burov, E., Avouac, J. P., 2004. Tectonic evolution of a continental collision zone: a thermomechanical numerical model. Tectonics, 23(6): TC6003. doi: 10.1029/2003TC001604.
      [28] Wang, L. S., Li, C., Yang, C., 1996. The lithospheric thermal structure beneath Tarim basin, western China. Acta Geophysica Sinica, 39(6): 794-803 (in Chinese with English abstract).
      [29] Watts, A. B., Burov, E. B., 2003. Lithospheric strength and its relationship to the elastic and seismogenic layer thickness. Earth and Planetary Science Letters, 213(1-2): 113131. doi: 10.1016/S0012-821X(03)00289-9.
      [30] Watts, A. B., 1992. The effective elastic thickness of the lithosphere and the evolution of foreland basins. Basin Research, 4(3-4): 169-178. doi: 10.1111/j.13652117.1992.tb00043.x.
      [31] Williams, J., Ruiz, J., Rosenburg, M. A., et al., 2011. Insolation driven variations of mercury's lithospheric strength. Journal of Geophysical Research, 116: E01008. doi: 10.1029/2010JE003655.
      [32] Wu, S. M., Zhou, D., Liu, H. L., 2004. Tectonic framework and evolutionary charateristics of Nansha block, South China Sea. Geotectonica et Metallogenia, 28(1): 23-28 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DGYK200401003&dbcode=CJFD&year=2004&dflag=pdfdown
      [33] Wu, Y., Jin, Z. M., Ou, X. G., et al., 2005. Lithosphereic thermal structure beneath the area of the Chinese continental scientific drilling site (CCSD). Acta Petrologica Sinica, 21(2): 439-450 (in Chinese with English abstract). http://www.researchgate.net/profile/Yao_Wu11/publication/287195678_Lithospheric_thermal_structure_beneath_the_area_of_the_Chinese_Continental_Scientific_Drilling_Site_CCSD/links/5672291d08ae54b5e45fbbe7.pdf
      [34] Zang, S. X., Li, C., Ning, J. Y., et al., 2003. A preliminary model for 3-D rheological structure of the lithosphere in North China. Science in China (Ser. D), 46(5): 461473. doi: 10.1360/03yd9040.
      [35] Zhang, J., Song, H. B., 2001. The thermal structure of main sedimentary basins in the northern margin of the South China Sea. Journal of Geomechanics, 7(3): 238-244 (in Chinese with English abstract). http://www.researchgate.net/publication/283689077_The_thermal_structure_of_main_sedimentary_basins_in_the_northern_margin_of_the_South_China_Sea
      [36] Zhao, L. H., Jiang, X. D., Jin, Y., et al., 2004. Effective elastic thickness of continental lithosphere in western China. Earth Science—Journal of China University ofGeosciences, 29(2): 183-190 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200402010.htm
      [37] Zhou, D., Yao, B. C., 2009. Tectonics and sedimentary basins of the South China Sea: challenges and progresses. Journal of Earth Science, 20(1): 1-12. doi: 10.1007/s12583-009-0001-8.
      [38] Zhou, D., Yu, H. S., Xu, H. H., et al., 2003. Modeling of thermo-rheological structure of lithosphere under the foreland basin and mountain belt of Taiwan. Tectonophysics, 374(3-4): 115-134. doi: 10.1016/S00401951(03)00236-1.
      [39] 安美建, 石耀霖, 2007. 中国大陆地壳和上地幔三维温度场. 中国科学(D辑), 37(6): 736-745. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200706003.htm
      [40] 付永涛, 李继亮, 周辉, 等, 2000. 大陆岩石圈有效弹性厚度研究综述. 地质论评, 46(2): 149-159. doi: 10.3321/j.issn:0371-5736.2000.02.005
      [41] 刘绍文, 王良书, 贾承造, 等, 2008. 中国中西部盆地区岩石圈热—流变学结构及其对前陆盆地成因演化的意义. 地学前缘, 15(3): 113-122. doi: 10.3321/j.issn:1005-2321.2008.03.008
      [42] 欧新功, 金振民, 夏斌, 等, 2006. 利用超高压变质岩的P波速度估算地下岩石的热导率. 地球科学——中国地质大学学报, 31(4): 564-568. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200604014.htm
      [43] 苏达权, 黄慈流, 夏戡原, 1996. 论南沙海槽的地壳性质. 地质科学, 31(4): 409-415. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199604009.htm
      [44] 王良书, 李成, 杨春, 1996. 塔里木盆地岩石层热结构特征. 地球物理学报, 39(6): 794-803. doi: 10.3321/j.issn:0001-5733.1996.06.009
      [45] 吴世敏, 周蒂, 刘海龄, 2004. 南沙地块构造格局及其演化特征. 大地构造与成矿学, 28(1): 23-28. doi: 10.3969/j.issn.1001-1552.2004.01.004
      [46] 吴耀, 金振民, 欧新功, 等, 2005. 中国大陆科学钻探(CCSD)主孔地区岩石圈热结构. 岩石学报, 21(2): 439-450. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200502019.htm
      [47] 张健, 宋海斌, 2001. 南海北部大陆架盆地热结构. 地质力学学报, 7(3): 238-244. doi: 10.3969/j.issn.1006-6616.2001.03.007
      [48] 赵俐红, 姜效典, 金煜, 等, 2004. 中国西部大陆岩石圈的有效弹性厚度研究. 地球科学——中国地质大学学报, 29(2): 183-190. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200402010.htm
    • 加载中
    图(5) / 表(2)
    计量
    • 文章访问数:  3047
    • HTML全文浏览量:  151
    • PDF下载量:  67
    • 被引次数: 0
    出版历程
    • 收稿日期:  2011-05-28
    • 刊出日期:  2011-09-15

    目录

      /

      返回文章
      返回