• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    石油污染多孔介质湿润性变异特征

    梁春 郑西来 张俊杰

    梁春, 郑西来, 张俊杰, 2011. 石油污染多孔介质湿润性变异特征. 地球科学, 36(4): 765-770. doi: 10.3799/dqkx.2011.078
    引用本文: 梁春, 郑西来, 张俊杰, 2011. 石油污染多孔介质湿润性变异特征. 地球科学, 36(4): 765-770. doi: 10.3799/dqkx.2011.078
    LIANG Chun, ZHENG Xi-lai, ZHANG Jun-jie, 2011. Characteristics of Wettability Variation of Oil-Contaminated Porous Medium. Earth Science, 36(4): 765-770. doi: 10.3799/dqkx.2011.078
    Citation: LIANG Chun, ZHENG Xi-lai, ZHANG Jun-jie, 2011. Characteristics of Wettability Variation of Oil-Contaminated Porous Medium. Earth Science, 36(4): 765-770. doi: 10.3799/dqkx.2011.078

    石油污染多孔介质湿润性变异特征

    doi: 10.3799/dqkx.2011.078
    基金项目: 

    国家自然科学基金项目 40872150

    详细信息
      作者简介:

      梁春(1983-),女,博士生,主要从事地下水污染控制、水资源利用与保护方面研究

      通讯作者:

      郑西来,E-mail:zhxilai@ouc.edu.cn

    • 中图分类号: X53

    Characteristics of Wettability Variation of Oil-Contaminated Porous Medium

    • 摘要: 一定程度的石油污染可使多孔介质的湿润性发生变异,导致介质持水能力降低、地下水石油污染、粮食产量品质下降等.采用滴水穿透时间法与酒精溶液入渗法,测定了亚粘土和粗砂在不同柴油、机油含量下的斥水水平,确定了亚粘土、粗砂由亲水表面变为疏水表面的临界含油量.结果表明,亚粘土、粗砂湿润性变异的临界机油含量分别约为7%、0.5%,粗砂湿润性变异的临界柴油含量约为14%,而柴油污染对亚粘土湿润性的影响不显著.另外,当石油污染多孔介质的含水量达到某一临界值时,湿润性将再次发生反转,由疏水表面变回亲水表面.测得机油、柴油污染粗砂的临界含水量约在0.2%~1%之间,机油污染亚粘土的临界含水量在数值上与其含油量近似相等.

       

    • 图  1  当亚粘土中机油含量分别为8%(a)、10%(b)、12%(c)时,不同含水率下的酒精水溶液入渗时间变化

      Fig.  1.  Infiltration time in clay by MED method under the condition of different water contents

      图  2  当亚粘土中机油含量分别为8%、10%、12%时,不同含水率下机油污染亚粘土的斥水性水平变化曲线

      Fig.  2.  Variation curve of water repellency level under the condition of different water contents

      图  3  砂土中机油含量分别为1%、2%、4%时,在不同含水率下的斥水性水平变化曲线

      Fig.  3.  Variation curve of water repellency level under the condition of different water content

      图  4  砂土中机油含量分别为16%、18%、20%时,在不同含水率下的斥水性水平变化曲线

      Fig.  4.  Variation curve of water repellency level under the condition of different water content

      表  1  供试多孔介质的粒径分布与物理性质

      Table  1.   Grain size distribution and physical properties for porous media samples

      多孔介质 比重 比表面积(m2·g-1) 各粒组含量(%) 工程分类
      2~1 (mm) 1~0.5 (mm) 0.5~0.25 (mm) 0.25~0.1 (mm) 0.1~0.075 (mm) 0.075~0.005 (mm)
      砂性土 2.66 4.69 17.4 45.3 27.9 8.1 0.3 1.0 粗砂
      粘性土 2.70 31.57 0.6 0.3 0.2 0.7 75.6 22.6 粉质亚粘土
      下载: 导出CSV

      表  2  供试油品的基本性质

      Table  2.   Basic properties of diesel and engine oil

      油品名称 密度(g·cm-3) 粘滞系数(mPa·s) 表面张力(mN·m-1) 油-水界面张力(mN·m-1)
      0#柴油 0.848 3.56~4.05 27.8 19.0
      CD15W-40机油 0.878 404~444 31.2 24.5
      下载: 导出CSV

      表  3  酒精溶液入渗法的斥水性描述与水平标准

      Table  3.   Water repellency description and level standard of MED method

      水平 斥水性描述 酒精溶液体积分数(%)
      7 极端斥水 36
      6 异常强烈斥水 24
      5 强烈斥水 13
      4 中度斥水 8.5
      3 轻微斥水 5
      2 亲水 3
      1 异常亲水 0
      下载: 导出CSV

      表  4  不同机油含量下亚粘土的MED入渗时间

      Table  4.   Infiltration time in clay by MED method in the condition of different engine oil contents

      多孔介质含油率 不同体积分数的酒精溶液的入渗时间(s)
      0 3% 5% 8.5% 13% 24% 36%
      4% 1.82 1.63 1.31 1.12 0.95 0.66 0.52
      6% 2.75 2.52 2.35 2.05 1.82 1.45 1.15
      7% 4.51 4.34 4.03 3.65 3.12 2.41 2.14
      7.25% 6.32 6.46 6.33 6.16 5.05 4.44 2.33
      7.5% 6.54 6.74 7.45 6.82 6.75 4.81 2.43
      8% 7.87 8.63 8.12 7.51 7.24 5.73 2.72
      10% 34.21 27.61 25.23 17.52 17.53 11.23 3.44
      下载: 导出CSV

      表  5  不同机油含量下粗砂的MED入渗时间

      Table  5.   Infiltration time in sand by MED method in the condition of different engine oil contents

      多孔介质含油率 不同体积分数的酒精溶液的入渗时间(s)
      0 3% 5% 8.5% 13% 24% 36%
      0.5% 4.11 3.92 3.65 3.15 2.51 1.82 1.45
      0.8% 13.54 13.13 12.82 12.52 11.11 4.33 4.33
      1% 30.55 30.23 28.15 23.13 20.92 4.92 1.62
      2% 40.13 37.22 33.92 30.62 24.11 5.12 1.81
      4% 50.14 42.65 31.32 30.12 26.34 5.74 2.14
      下载: 导出CSV

      表  6  不同柴油含量下粗砂的MED入渗时间

      Table  6.   Infiltration time in sand by MED method in the condition of different diesel oil contents

      多孔介质含油率 不同体积分数的酒精溶液的入渗时间(s)
      0 3% 5% 8.5% 13% 24% 36%
      14% 4.82 4.64 4.13 3.82 3.15 2.67 2.15
      16% 9.15 8.22 7.12 5.26 4.71 3.21 1.92
      18% 14.15 13.81 13.34 12.91 5.34 4.33 2.18
      下载: 导出CSV
    • [1] Chen, J.Y., Zhang, Z.T., Gillerman, L., et al., 2009. Effect of different contamination domestic waste water on soil water repellency. Water Saving Irrigation, 10: 13-16, 19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSGU200910005.htm
      [2] Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Revviews, 51(1-4): 33-65. doi: 10.1016/S0012-8252(00)00011-8
      [3] Jarvis, N., Etana, A., Stagnitti, F., 2008. Water repellency, near-saturated infiltration and preferential solute transport in a macroporous clay soil. Geoderma, 143(3-4): 223-230. doi: 10.1016/j.geoderma.2007.11.015
      [4] Jiang, P., Zhang, G.C., Ge, J.J., et al., 2007. Progress in the research of wettability reversal mechanism. Journal of Xi'an Shiyou University (Natural Science Edition), 22(6): 78-84 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XASY200706019.htm
      [5] Letey, J., Carrillo, M.L.K., Pang, X.P., 2000. Approaches to characterize the degree of water repellency. Journal of Hydrology, 231-232: 61-65. doi: 10.1016/S0022-1694(00)00183-9
      [6] McKissock, I., Walker, E.L., Gilkes, R.J., et al., 2000. The influence of clay type on reduction of water repellency by applied clays: a review of some West Australian work. Journal of Hydrology, 231-232: 323-332. doi: 10.1016/S0022-1694(00)00204-3
      [7] Nieber, J.L., Bauters, T.W.J., Steenhuis, T.S., et al., 2000. Numerical simulation of experimental gravity-driven unstable flow in water repellent sand. Journal of Hydrology, 231-232: 295-307. doi: 10.1016/S0022-1694(00)00202-X
      [8] Quyum, A., Achari, G., Goodman, R.H., 2002. Effect of wetting and drying and dilution on moisture migration through oil contaminated hydrophobic soils. The Science of the Total Environment, 296(1-3): 77-87. doi: 10.1016/S0048-9697(02)00046-3
      [9] Simkovic, I., Dlapa, P., Doerr, S.H., et al., 2008. Thermal destruction of soil water repellency and associated changes to soil organic matter as observed by FTIR spectroscopy. Catena, 74(3): 205-211. doi: 10.1016/j.catena.2008.03.003
      [10] Sonneveld, M.P.W., Backx, M.A.H.M., Bouma, J., 2003. Simulation of soil water regimes including pedotransfer functions and land-use related preferential flow. Geoderma, 112(1-2): 97-110. doi: 10.1016/S0016-7061(02)00298-7
      [11] Stefan, H.D., 1998. On standardizing the 'water drop penetration time' and the 'molarity of an ethanol droplet' techniques to classify soil hydrophobicity: a case study using medium textured soils. Earth Surf. Process and Landforms, 23(7): 663-668. doi: 10.1002/(SICI)1096-9837(199807)
      [12] Tessler, N., Wittenberg, L., Malkinson, D., et al, 2008. Fire effects and short-term changes in soil water repellency-Mt. Carmel, Israel. Catena, 74(3): 185-191. doi: 10.1016/j.catena.2008.03.002
      [13] Thwaites, L.A., de Rooij, G.H., Salzman, S., et al., 2006. Near-surface distributions of soil water and water repellency under three effluent irrigation schemes in a blue gum (Eucalyptus globules) plantation. Agricultural Water Management, 86(1-2): 212-219. doi: 10.1016/j.agwat.2006.07.002
      [14] Travis, M.J., Welsbrod, N., Gross, A., 2008. Accumulation of oil and grease in soils irrigated with grey water and their potential role in soil water repellency. Sci. Total Environ. , 394(1): 68-74. doi: 10.1016/j.scitotenv.2008.01.004
      [15] van Dam, J.C., Hendrickx, J.M.H., Van Ommen, H.C., et al., 1990. Water and solute movement in a coarse-textured water-repellent field soil. Journal of Hydrology, 120(1-4): 359-379. doi: 10.1016/0022-1694(90)90159-U
      [16] Wu, Y.L., Li, Z.Z., Gong, Y.S., 2007. Correlation of soil water repellency measurements from two typical methods. Transactions of the CSAE, 23(7): 8-13 (in Chinese with English abstract). http://dl.sciencesocieties.org/publications/tcsae/abstracts/2007/7/2007.7.002
      [17] Yang, B.J., Blackwell, P.S., Nicholson, D.F., 1996. Modeling heat and water movement in a water-repellent sandy soil. Acta Pedologica Sinica, 33(4): 351-359 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-TRXB604.003.htm
      [18] Zheng, X.L., Qiu, H.X., Jing, J., et al., 2000. Numerical modeling on elimination of oil-polluted soils in Shenyang-Fushun irrigation area. Earth Science—Journal of China University of Geosciences, 25(5): 462-466 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200005003.htm
      [19] Zheng, X.L., Wang, B.C., She, Z.L., et al., 2004. Theory and application research on oil contaminated soil-groundwater System. Geology Press, Beijing (in Chinese).
      [20] 陈俊英, 张智韬, Gillerman, L., 等, 2009. 不同污染程度的水对土壤斥水性的影响. 节水灌溉, 10: 13-16, 19. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGU200910005.htm
      [21] 蒋平, 张贵才, 葛际江, 等, 2007. 润湿反转机理的研究进展. 西安石油大学学报(自然科学版), 22(6): 78-84. doi: 10.3969/j.issn.1673-064X.2007.06.019
      [22] 吴延磊, 李子忠, 龚元石, 2007. 两种常用方法测定土壤斥水性结果的相关性研究. 农业工程学报, 23(7): 8-13. doi: 10.3321/j.issn:1002-6819.2007.07.002
      [23] 杨邦杰, Blackwell, P.S., Nicholson, D.F., 1996. 斥水性土壤中的水热运动规律与数值模型. 土壤学报, 33(4): 351-359.
      [24] 郑西来, 邱汉学, 荆静, 等, 2000. 沈抚灌区石油污染土壤恢复方案的数值模拟. 地球科学——中国地质大学学报, 25(5): 462-466. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200005003.htm
      [25] 郑西来, 王秉忱, 佘宗莲, 2004. 土壤-地下水系统石油污染原理与应用研究. 北京: 地质出版社.
    • 加载中
    图(4) / 表(6)
    计量
    • 文章访问数:  3093
    • HTML全文浏览量:  99
    • PDF下载量:  43
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-11-09
    • 刊出日期:  2011-07-01

    目录

      /

      返回文章
      返回