Numerical Simulation and Forecast of Mine Discharge in Wanghe Coal Mine
-
摘要: 针对岩溶充水矿井涌水量数值模拟中边界条件概化和非均质性刻画难题,采用分别建立区域模型和局部模型的方法解决边界概化问题,运用信息复合技术刻画岩溶介质的非均质性.以具有完整水文地质边界的荥巩矿区为计算区建立区域模型,以区域模型计算出的流量作为边界条件建立王河煤矿矿井涌水量模拟模型(局部模型).在充分分析钻孔、构造、突水、物探等资料的基础上,运用信息复合技术对煤矿充水含水层进行垂向和平面参数分区.在此基础上,利用GMS建立了精细的王河煤矿涌水量模拟模型.利用该模型预测了不同开采工作面的矿井正常涌水量和最大涌水量.结果表明,开采111070、113090、113110、113120工作面时,正常涌水量分别为490、350、560、590 m3/h,最大涌水量分别为690、490、790、830 m3/h.预测结果可为矿山设计部门确定开采方案、布置排水设备和制定防治水措施提供科学依据.Abstract: In numerical simulation of mine discharge of karst water, a regional model and a local model are constructed to solve the boundary conceptualization, and the heterogeneity of karst medium is depicted using information compound technology. The regional model of the study area, Xinggong mining area, is constructed due to the fact that it has complete hydrogeological boundary which can provide specified flow values for boundaries in the simulation model of mine discharge in Wanghe coal mine, which is the local model. The vertical and horizontal parameters of the water filling aquifer are divided using information compound technology, based on the analysis of many data such as borehole, structure, water inrush and geophysical investigation. The refined simulation model of mine discharge in Wanghe coal mine is then constructed. The normal mine discharge and maximum mine discharge of different mining faces are forecasted using this model. The results show that when mining the faces of 111070, 113090, 113110 and 113120, the normal mine discharges are 490, 350, 560 and 590 m3/h respectively, and the maximum mine discharges are 690, 490, 790, and 830 m3/h respectively. The results can provide a scientific basis for the mine design department to determine mining scheme, arrange drainage equipment and take measures to control water.
-
Key words:
- mine discharge /
- numerical simulation /
- regional model /
- local model /
- groundwater /
- coal mines
-
表 1 疏干排水量与疏干时间
Table 1. Water discharge and time when dewatering
开采工作面 底板标高(m) 安全水位(m) 疏干排水量(m3/h) 疏干时间(d) 111070 -86.5 -62.5 540 172 1 080 36 113090 -95 -71 540 122 1 080 31 113110 -110 -92 540 439 1 080 116 1 620 52 113120 -120 -102 540 472 1 080 116 1 620 53 表 2 正常涌水量和最大涌水量预测结果
(m3·h-1) Table 2. The forecasting normal and maximum mine discharge
开采工作面 111070 113090 113110 113120 正常涌水量 490 350 560 590 最大涌水量 690 490 790 830 -
[1] Bochenska, T., Fiszer, J., Kalisz, Ƚ. M., 2000. Prediction of groundwater inflow into copper mines of the Lubin Glogów Copper district. Environmental Geology, 39(6): 587-594. doi: 10.1007/s002540050470 [2] Cui, G.Z., Zhu, Y.F., 1985. On the problem of boundary condition in karst ground water system forecasting. Carsologica Sinica, (1, 2): 49-57 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGYR1985Z1005.htm [3] Leake, S.A., Lawson, P.W., Lilly, M.R., et al., 1998. Assignment of boundary conditions in embedded ground water flow models. Ground Water, 36(4): 621-625. doi: 10.1111/j.1745-6584.1998.tb025836.x [4] Rapantova, N., Grmela, A., Vojtek, D., et al., 2007. Ground water flow modelling applications in mining hydrogeology. Mine Water and the Environment, 26(4): 264-270. doi: 10.1007/s10230-007-0017-1 [5] Tsang, C.F., 2000. Modeling groundwater flow and mass transport in heterogeneous media: issues and challenges. Earth Science—Journal of China University of Geosciences, 25(5): 443-450 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQKX200005000.htm [6] Wu, Q., Chen, M.Y., Tian, K.M., et al., 1992. The research of a para-three-dimensional numerical model for forecasting water inflow in mine in the coalfield of North China. Earth Science—Journal of China University of Geosciences, 17(1): 87-94 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199201012.htm [7] Wu, Q., Jiang, Z.Y., Sun, D.Y., et al., 2000. Condition of water burst and dynamic forecast of inflow in Donghuantuo mine. Coal Geology & Exploration, 28(6): 32-35 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MDKT200006010.htm [8] Xue, Y.Q., Wu, J.C., Xie, C.H., et al., 1996. Numerical simulation of ground water drainage for Yuanbaoshan opencast coal mine. Journal of China Coal Society, 21(3): 255-260 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB603.006.htm [9] Yin, H.Y., Wei, J.C., Liu, T.B., et al., 2008. Evaluation of water inrush in seam floor based on multi-originated information complex. Journal of Shandong University of Science and Technology (Natural Science), 27(2): 6-9 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SDKY200802003.htm [10] Zhang, H.S., Xue, G.W., Shi, X.W., et al., 2009. Prediction of water inrush from coal seam floor confined based on geo-information composite overlay analysis. Journal of China Coal Society, 34(8): 1100-1104 (in Chinese with English abstract). http://www.cqvip.com/QK/96550X/20098/31247529.html [11] 崔光中, 朱远峰, 1985. 论岩溶水系统预报时边界条件问题. 中国岩溶, (1, 2): 49-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR1985Z1005.htm [12] Tsang, C.F., 2000. 非均质介质中地下水流动与溶质运移模拟——问题与挑战. 地球科学——中国地质大学学报, 25(5): 443-450. http://www.cnki.com.cn/Article/CJFDTotal-DQKX200005000.htm [13] 武强, 陈明佑, 田开铭, 等, 1992. 中国华北型煤田矿坑涌水量预测的"准三维"数值模型研究. 地球科学——中国地质大学学报, 17(1): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199201012.htm [14] 武强, 江中云, 孙东云, 等, 2000. 东欢坨矿顶板涌水条件与工作面水量动态预测. 煤田地质与勘探, 28(6): 32-35. doi: 10.3969/j.issn.1001-1986.2000.06.011 [15] 薛禹群, 吴吉春, 谢春红, 等, 1996. 元宝山露天煤矿地下水疏干数值模拟. 煤炭学报, 21(3): 255-260. doi: 10.3321/j.issn:0253-9993.1996.03.007 [16] 尹会永, 魏久传, 刘同彬, 等, 2008. 基于多源信息复合的煤层底板突水评价. 山东科技大学学报(自然科学版), 27(2): 6-9. doi: 10.3969/j.issn.1672-3767.2008.02.002 [17] 张和生, 薛光武, 石秀伟, 等, 2009. 基于地学信息复合叠置分析对煤层底板突水的预测. 煤炭学报, 34(8): 1100-1104. doi: 10.3321/j.issn:0253-9993.2009.08.019