U-Pb-Hf Isotope of Zircons, Geochemistry and Genesis of Mengshan Granitoids in Northwestern Jiangxi Province
-
摘要: 华南印支期花岗岩形成的构造背景和成因机制存在较大的争议,赣西北印支期岩浆活动的规模及该次岩浆活动是否与基性岩浆的底侵有关,仍缺乏可靠的资料.过去认为赣西北蒙山花岗岩形成于燕山期,而本次锆石LA-ICP-MS U-Pb年代学研究表明,蒙山3次花岗质岩浆活动的时间分别为236±3 Ma,220±3 Ma和217±1 Ma.蒙山花岗岩属准铝-过铝质,高硅、富钾,K2O+Na2O为7.53%~8.86%;稀土总量为213.09~380.75 μg/g,轻稀土元素富集,δEu=0.07~0.40,富集大离子亲石元素,Nb-Ta弱亏损,P、Ti亏损.大部分花岗岩的εNd(t)值为-9.9~-6.1,Nd二阶段模式年龄tDM2为1.5~1.8 Ga.第1次形成的灰白色粗粒花岗岩锆石的εHf(t)值大部分集中在1.10~2.65,Hf同位素单阶段模式年龄tDM1集中分布于782~866 Ma,二阶段模式年龄tDM2集中分布在1 096~1 186 Ma,说明其物源主要为新元古代早期形成的地壳;第3次形成的细粒花岗岩锆石的εHf(t)值集中分布于1.71~4.98,tDM1为671~832 Ma,tDM2集中在932~1 139 Ma.蒙山细粒花岗岩锆石的Hf同位素组成暗示成岩过程中有基性岩浆加入,为华南部分印支期花岗岩的成因与基性岩浆底侵有关的关系提供了证据.蒙山花岗岩的Nd同位素和锆石Hf同位素出现了解耦现象,解耦原因可能与花岗岩的物源主要为新元古代早期形成的具有Nd-Hf解耦特征的弧源地壳有关.根据目前获得的有关华南印支期火成岩的资料,总结了华南印支期花岗岩类岩石的成因类型及其时空分布规律,据此讨论了华南印支期的动力学背景和华南印支期花岗岩的成因机制,认为华南印支期的构造-岩浆活动与古太平洋西北向俯冲于华南板块之下有关.Abstract: The petrogenesis and tectonic setting of the Indosinian granites within the South China Block (SCB) are controversial, and there is no sound geochronological proof on occurrence of Indosinian magmatism in northwestern Jiangxi Province. Mengshan granitoids in this region were thought to be a Yanshanian intrusion. However, our new geochronological results show that Mengshan granites consist of three Indosinian magmatisms, with ages of 236±3 Ma, 220±3 Ma and 217±1 Ma respectively. Researches on geochemistry and Hf isotope of zircons are carried out. The Mengshan granites are metaluminous-peraluminous, having high SiO2 and K2O, with K2O+Na2O 7.53%-8.86%. The granites have ∑REE of 213.09-380.75 μg/g and REE patterns of LREE-enrichment with moderate negative Eu anomalies (Eu/Eu* = 0.07-0.40).There is strong enrichment in LILE, but showing pronounced negative anomalies in HFSE (Nb, Ta and TiO2) relative to neighbouring elements. Calculated εNd (t) values for most of samples are -9.9 to -6.1 and corresponding two-stage Nd model ages (tDM2) are 1.5-1.8 Ga. Most of the zircons from the greyish-white coarse biotite granites which were formed firstly have εHf(t) of 1.10 to 2.65, their single-stage Hf model ages tDM1 range from 782 to 866 Ma and two-stage Hf model ages tDM2 are 1 096-1 186 Ma.The zircons from the fined-grained granites which were formed thirdly in Mengshan complex have εHf(t) values of 1.71-4.98, and Hf tDM1 of 671-832 Ma and Hf tDM2 mostly are 932-1 139 Ma.The compositions of zircon Hf isotope suggest an addition of newly mantle-derived magma during the diagenesis of Mengshan granites, which provide a direct proof for the relationship between basalts underplating and the genesises of some Indonisian granites in South China. Decoupling between Nd and Hf isotopes has been found in Mengshan granites, and it probably resulted from the involvement of Neoproterozoic island-arc crust. The regularity of genentic types and the temporal-spatial distribution of the Indosinian magmatism in SCB are summarized. On this basis, the Indosinian tectonic setting and the petrogenesis of the Indosinian granites in SCB are discussed. The northwestward subduction of Pacific was probably responsible to the Indosinian magmatisms in SCB.
-
Key words:
- granitoids /
- zircon U-Pb dating /
- geochronology /
- Hf isotope /
- geochemistry /
- Indosinian /
- South China
-
图 1 华南大陆印支期花岗岩体分布和赣西北蒙山花岗岩体地质略图
1.灰白色粗粒黑云母花岗闪长岩;2.肉红色中粒黑云母花岗岩;3.灰色细粒黑云母花岗闪长岩;4.闪长玢岩脉;5.二叠系地层;6.第四系;①政和-大埔断裂;②武平-浦城断裂;③河源-广丰断裂;④赣江断裂;⑤四会-吴川断裂;⑥梧州-郴州-茶陵断裂;⑦萍乡-江山断裂;⑧资源-宁乡NE向断裂;⑨通道-安化NE向断裂;⑩常德-安仁NW向断裂;B11邵阳-郴州NW向断裂;B12白马山-紫云山-板杉铺EW向断裂;B13绥宁-牛头寨-祁东EW向断裂;B14阳明山-塔山-上堡EW向断裂;B15新宁-蓝山NW向断裂;B16贵东-大东山EW向断裂;底图据孙涛(2006)修改;图中断裂参考饶家荣等(1993)、王岳军等(2005)、柏道远等(2006)和Wang et al.(2007)
Fig. 1. Distribution of the Indosinian granites in South China and geological sketch map of Mengshan granites
图 4 蒙山岩体的稀土元素分配曲线(a)和微量元素蛛网图(b)
用于标准化的球粒陨石值据Boynton(1984),大洋中脊玄武岩值据Pearce(1983)
Fig. 4. MORB-normalized trace element diagrams (a) and chondrite-normalized rare earth element diagrams (b) for Mengshan granites
表 1 赣西北蒙山花岗岩锆石LA-ICP-MS U-Pb年龄分析数据
Table 1. LA-ICP-MS zircon analytical data of the dating samples from Mengshan granites in northwestern Jiangxi Province
分析点 207Pb/206Pb±1σ 207Pb/235U±1σ 206Pb/238U±1σ 208Pb/232Th±1σ 238U/232Th 207Pb/206Pb±1σMa 207Pb/235U±1σMa 206Pb/238U±1σMa 208Pb/232Th±1σMa J03-8-1-1 0.051 03±0.000 79 0.269 44±0.003 30 0.038 29±0.000 19 0.012 18±0.000 09 1.805 225 242±19 242±3 242±1 245±2 J03-8-1-2 0.051 68±0.000 70 0.276 12±0.002 53 0.037 54±0.000 17 0.012 10±0.000 07 1.960 166 271±35 240±3 237±1 237±1 J03-8-1-3 0.051 32±0.000 81 0.357 18±0.002 60 0.037 76±0.000 17 0.013 93±0.000 07 1.344 760 255±46 236±4 234±1 234±1 J03-8-1-4 0.052 93±0.001 13 0.351 30±0.004 43 0.035 85±0.000 19 0.014 05±0.000 11 1.790 309 326±58 231±5 222±1 221±1 J03-8-1-5 0.052 88±0.000 93 0.272 43±0.004 02 0.037 36±0.000 20 0.011 75±0.000 10 1.586 407 324±24 245±3 236±1 236±2 J03-8-1-6 0.051 56±0.000 91 0.394 77±0.002 98 0.037 80±0.000 17 0.018 11±0.000 10 2.736 682 266±46 235±4 232±1 232±2 J03-8-1-7 0.051 02±0.001 17 0.395 32±0.004 83 0.038 09±0.000 21 0.017 51±0.000 14 2.420 386 242±62 234±5 234±1 234±2 J03-8-1-8 0.066 81±0.001 41 0.683 08±0.006 68 0.047 64±0.000 25 0.021 64±0.000 15 1.641 369 832±57 354±8 286±2 278±2 J03-8-1-9 0.080 77±0.001 64 0.426 39±0.007 53 0.038 28±0.000 26 0.013 92±0.000 11 0.751 190 1 216±24 361±5 242±2 279±2 J03-8-2-1 0.078 40±0.001 31 0.369 16±0.004 96 0.034 15±0.000 19 0.008 79±0.000 07 0.945 000 1 157±18 319±4 216±1 177±1 J03-8-2-2 0.051 58±0.000 73 0.241 41±0.002 51 0.033 94±0.000 16 0.010 38±0.000 07 1.688 750 267±15 220±2 215±1 209±1 J03-8-2-3 0.060 65±0.000 88 0.284 93±0.003 14 0.034 07±0.000 16 0.010 16±0.000 05 0.657 520 627±16 255±2 216±1 204±1 J03-8-2-4 0.053 42±0.000 59 0.251 84±0.001 47 0.034 19±0.000 14 0.011 38±0.000 06 4.980 220 283±20 222±2 217±1 216±1 J03-8-2-5 0.069 68±0.001 32 0.327 19±0.005 25 0.034 06±0.000 20 0.012 82±0.000 12 1.778 890 402±64 228±6 212±1 210±2 J03-8-2-6 0.061 55±0.002 30 0.290 26±0.010 27 0.034 20±0.000 35 0.008 55±0.000 21 2.007 060 659±58 259±8 217±2 172±4 J03-8-2-7 0.058 23±0.001 04 0.274 20±0.004 11 0.034 15±0.000 19 0.010 97±0.000 10 1.748 320 449±50 237±5 216±1 213±1 J03-8-2-8 0.107 53±0.001 32 0.51758±0.004 06 0.034 90±0.000 16 0.016 12±0.000 09 1.623 430 866±52 274±6 210±1 203±1 J03-8-2-9 0.123 68±0.001 99 0.642 71±0.008 11 0.037 68±0.000 23 0.019 63±0.000 16 1.465 970 708±94 268±10 220±2 214±2 J03-8-2-10 0.049 97±0.000 87 0.234 64±0.003 40 0.034 05±0.000 18 0.010 19±0.000 08 1.643 760 194±24 214±3 216±1 205±2 J03-8-2-11 0.070 30±0.001 51 0.329 83±0.006 24 0.034 02±0.000 22 0.008 14±0.000 09 1.178 930 937±28 289±5 216±1 164±2 J03-8-2-12 0.053 24±0.001 28 0.251 26±0.005 49 0.034 22±0.000 23 0.011 31±0.000 12 1.442 530 339±37 228±4 217±1 227±2 J03-8-2-13 0.062 77±0.000 89 0.296 13±0.003 13 0.034 21±0.000 16 0.009 75±0.000 07 1.691 750 700±15 263±2 217±1 196±1 J03-8-2-14 0.167 44±0.001 85 0.816 85±0.004 83 0.035 38±0.000 16 0.010 67±0.000 05 0.753 170 2 409±22 566±5 220±1 195±1 J03-8-2-15 0.067 16±0.001 08 0.343 21±0.004 45 0.037 05±0.000 20 0.012 64±0.000 08 0.769 890 242±76 231±7 230±1 230±1 M02-1-1 0.052 76±0.000 97 0.250 38±0.004 04 0.034 54±0.000 24 0.010 64±0.000 11 1.066 071 318±24 227±3 219±1 214±2 M02-1-2 0.068 32±0.001 84 0.313 30±0.007 83 0.033 37±0.000 29 0.015 72±0.000 31 2.828 392 878±37 277±6 212±2 315±6 M02-1-3 0.056 92±0.001 48 0.248 39±0.006 22 0.031 65±0.000 21 0.009 84±0.000 09 2.609 201 488±59 225±5 201±1 198±2 M02-1-4 0.060 76±0.002 01 0.301 30±0.009 65 0.035 97±0.000 29 0.011 09±0.000 07 1.451 255 631±73 267±8 228±2 223±1 M02-1-5 0.053 75±0.000 89 0.262 36±0.004 00 0.035 40±0.000 22 0.011 08±0.000 07 2.811 993 361±38 237±3 224±1 223±1 M02-1-6 0.057 09±0.001 20 0.275 11±0.005 23 0.035 04±0.000 26 0.013 71±0.000 21 2.505 331 495±29 247±4 222±2 275±4 M02-1-7 0.053 43±0.001 66 0.249 61±0.007 52 0.033 88±0.000 27 0.010 61±0.000 06 2.919 549 347±72 226±6 215±2 213±1 M02-1-8 0.052 14±0.001 01 0.243 07±0.004 21 0.033 89±0.000 24 0.010 58±0.000 16 1.897 759 292±27 221±3 215±1 213±3 M02-1-9 0.055 68±0.001 10 0.267 99±0.004 98 0.034 91±0.000 23 0.010 88±0.000 06 3.341 864 440±45 241±4 221±1 219±1 M02-1-10 0.064 95±0.000 75 0.312 36±0.002 53 0.034 94±0.000 21 0.016 22±0.000 13 2.735 409 773±8 276±2 221±1 325±3 M02-1-11 0.051 93±0.000 74 0.253 23±0.002 95 0.035 43±0.000 22 0.011 01±0.000 12 3.743 464 282±16 229±2 224±1 221±2 M02-1-12 0.069 71±0.000 82 0.318 55±0.002 68 0.033 19±0.000 20 0.017 88±0.000 15 3.051 345 920±8 281±2 210±1 358±3 M02-1-13 0.051 63±0.000 98 0.251 99±0.004 49 0.035 40±0.000 22 0.011 13±0.000 06 3.731 325 269±8 228±4 224±1 224±1 M02-1-14 0.058 12±0.001 15 0.283 39±0.005 30 0.035 36±0.000 24 0.010 96±0.000 06 2.329 393 534±44 253±4 224±1 220±1 M02-1-15 0.055 33±0.001 18 0.264 98±0.005 11 0.034 76±0.000 26 0.010 79±0.000 13 1.566 963 426±30 239±4 220±2 217±3 M02-1-16 0.055 82±0.000 68 0.270 07±0.002 45 0.035 11±0.000 21 0.012 65±0.000 11 2.232 840 445±10 243±2 222±1 254±2 表 2 蒙山花岗岩代表性样品的主量元素(%)和微量元素(μg/g)分析结果
Table 2. Major and trace element analyses of Mengshan granites
岩性 灰白色中-粗粒花岗岩 肉红色花岗岩脉 浅肉红色钾长花岗岩 灰白色细粒花岗岩 样号 J03-8-1 M08-1 M09-1 M05-2 M12-1 J03-8-4 M02-1 M03-1 J03-8-2 M11-1 SiO2 75.46 72.66 75.15 73.67 74.01 77.01 76.21 74.53 72.92 72.91 TiO2 0.23 0.24 0.21 0.24 0.16 0.08 0.13 0.28 0.35 0.27 Al2O3 12.80 13.07 12.08 12.81 13.04 12.51 12.09 12.30 13.80 13.06 Fe2O3 0.16 0.34 0.40 0.22 0.28 0.26 0.34 0.67 0.32 0.45 FeO 1.32 1.48 1.23 1.37 1.15 0.35 0.77 1.30 1.52 1.50 MnO 0.05 0.05 0.05 0.03 0.04 0.03 0.03 0.04 0.04 0.04 MgO 0.32 0.44 0.36 0.57 0.30 0.15 0.22 0.48 0.61 0.62 CaO 0.83 1.40 0.85 1.57 0.79 0.29 0.60 0.89 1.35 1.05 Na2O 3.11 3.12 3.34 3.11 3.69 3.08 3.14 3.05 2.92 3.00 K2O 4.57 5.16 5.12 4.88 5.17 4.99 5.51 5.49 4.61 5.21 P2O5 0.06 0.07 0.05 0.07 0.04 0.02 0.04 0.07 0.09 0.07 H2O 0.79 0.84 0.68 0.71 0.59 0.68 0.57 0.62 1.12 1.06 CO2 0.16 0.91 0.29 0.54 0.54 0.13 0.18 0.07 0.16 0.54 总量 99.86 99.78 99.81 99.79 99.80 99.88 99.83 99.79 99.81 99.78 K2O+Na2O 7.68 8.28 8.46 7.99 8.86 8.07 8.65 8.54 7.53 8.21 A/CNK 1.11 0.99 0.96 0.97 1.00 1.14 0.99 0.98 1.13 1.05 Al2O3/TiO2 55.65 54.46 57.52 53.38 81.50 156.38 93.00 43.93 39.43 48.37 Be 9.39 9.99 11.9 8.95 10.4 11.53 7.96 4.87 4.74 6.14 Sc 5.30 5.24 5.94 5.32 5.85 5.5 4.62 5.00 5.3 6.17 V 11.1 14.4 9.2 18.3 7.4 1.9 5.4 16.7 23.0 17.8 Cr 5.4 5.3 5.0 7.2 5.5 4.3 5.3 6.1 16.3 9.0 Co 1.6 3.0 1.8 2.9 1.7 0.3 1.5 3.2 2.7 2.9 Ni 2.83 2.14 2.41 3.26 2.45 1.84 1.90 2.34 4.28 3.71 Cu 3.2 15.0 2.7 12.0 2.7 3.9 5.1 6.4 3.1 9.6 Zn 21.8 32.5 30.8 20.8 26.8 13.4 22.0 34.3 20.0 30.6 Ga 17.6 17.3 16.9 15.8 18.3 19.9 15.9 15.5 17.8 16.8 Rb 458 498 429 442 546 667 474 387 328 390 Sr 59 100 42.2 107 52 29 21 57 167 99 Y 58.9 37.5 69.7 40.4 66.2 54.5 54.8 42.6 23.6 39.3 Zr 183 176 185 146 134 98 138 193 183 164 Nb 18.9 20.0 22.4 20.6 25.8 31.5 34.1 23.3 15.4 18.7 Cs 41.4 30.6 23.6 39.7 28.0 45.3 40.4 22.9 30.2 45.8 Ba 227 326 115 309 71 21 41 207 607 259 Hf 5.72 5.56 6.20 5.00 5.64 5.27 5.44 6.08 5.38 5.19 Ta 9.36 4.08 3.75 3.80 5.75 18.43 4.33 3.28 4.92 2.80 Pb 42.9 60.5 2.0 61.4 59.4 45.0 80.7 67.2 42.3 56.5 Th 43.4 42.6 66.3 39.6 48.8 42.7 51.7 60.9 30.2 55.6 U 16.22 12.40 10.20 23.50 17.30 25.53 22.10 14.70 3.95 13.00 锆石饱和温度(℃) 808 790 794 772 768 759 773 799 807 790 La 49.2 48.9 63.3 32.6 39.0 31.8 31.1 62.3 53.4 57.7 Ce 94.7 101.0 134.0 74.2 89.9 60.7 69.2 118.0 105.6 121.0 Pr 10.50 10.00 14.30 7.86 9.71 8.50 8.15 13.20 11.50 12.70 Nd 34.6 33.4 47.3 27.1 33.7 29.6 28.7 44.0 39.1 43.0 Sm 7.44 6.48 10.20 5.88 8.07 7.30 7.24 8.20 6.89 8.54 Eu 0.42 0.55 0.32 0.43 0.19 0.03 0.17 0.47 0.83 0.47 Gd 7.43 5.39 8.75 5.08 7.40 6.86 6.78 6.63 5.40 6.72 Tb 1.30 0.92 1.57 0.92 1.43 1.27 1.40 1.16 0.75 1.06 Dy 8.78 6.27 11.0 6.44 9.76 8.76 9.23 7.16 4.33 6.64 Ho 1.91 1.25 2.35 1.40 2.19 1.95 1.94 1.49 0.83 1.36 Er 5.94 3.88 7.37 4.28 6.62 5.98 5.88 4.36 2.47 3.98 Tm 0.96 0.62 1.17 0.67 1.11 1.01 0.98 0.69 0.37 0.60 Yb 6.33 4.42 8.18 5.07 8.11 7.10 6.28 4.37 2.32 4.35 Lu 0.92 0.67 1.24 0.76 1.19 1.00 0.96 0.68 0.36 0.62 δEu 0.17 0.28 0.10 0.24 0.07 0.01 0.07 0.19 0.40 0.18 ∑REE 290.67 261.25 380.75 213.09 284.58 224.49 232.81 315.31 257.71 308.04 表 3 蒙山花岗岩Rb-Sr和Sm-Nd同位素组成
Table 3. Isotopic compositions of Rb-Sr and Sm-Nd for Mengshan granites
岩性 灰白色粗粒花岗岩 肉红色花岗岩 灰白色细粒花岗岩 样号 J03-8-1 M09-1 M02-1 J03-8-2 M11-1 143Nd/144Nd 0.512 193 0.512 224 0.512 142 0.512 003 0.511 308 ±2σ(10-6) 1 2 1 1 4 Sm(μg) 7.44 10.20 7.24 6.90 8.54 Nd(μg) 34.6 47.3 28.7 39.1 43.0 147Sm/144Nd 0.130 6 0.130 0 0.152 8 0.106 6 0.119 9 εNd(t) -6.7 -6.1 -8.4 -9.9 -23.8 tDM1(Ga) 1.8 1.7 2.5 1.6 3.0 tDM2(Ga) 1.6 1.5 1.7 1.8 2.9 87Sr/86Sr 0.783 634 0.802 834 0.903 649 0.731 273 0.746 237 ±2σ(10-6) 2 3 3 3 3 Sr(μg) 59 42 21 167 99 Rb(μg) 458 429 474 328 390 87Rb/86Sr 22.575 29.660 68.000 5.698 11.469 (87Sr/86Sr)i 0.714 3 0.711 7 0.690 9 0.712 2 0.707 9 注:87Rb/86Sr和147Sm/144Nd由ICP-MS方法测定的Rb、Sr、Sm和Nd的含量计算获得;εNd(t)值计算采用(147Sm/144Nd)CHUR=0.196 7,(143Nd/144Nd)CHUR=0.512 638;Nd同位素亏损地幔模式年龄(tDM)计算采用(147Sm/144Nd)DM=0.213 7,(143Nd/144Nd)DM=0.513 15. 表 4 蒙山花岗岩锆石Hf同位素组成
Table 4. Zircon Hf isotopic data of the Mengshan granites in northwestern Jiangxi Province
分析点 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ (176Hf/177Hf)i εHf(t) 2σ tDM1(Ma) tDM2(Ma) J03-8-1-01 0.055 704 0.0019 54 0.282 706 0.000 032 0.282 698 2.54 1.15 793 1100 J03-8-1-02 0.029 480 0.001 129 0.282 662 0.000 031 0.282 657 1.10 1.09 838 1 192 J03-8-1-03 0.038 329 0.001 365 0.282 706 0.000 020 0.282 700 2.60 0.73 782 1 096 J03-8-1-04 0.080 020 0.002 980 0.282 673 0.000 020 0.282 659 1.18 0.70 866 1 186 J03-8-1-05 0.042 995 0.001 577 0.282 679 0.000 020 0.282 672 1.64 0.70 824 1 157 J03-8-1-06 0.019 555 0.000 734 0.282 686 0.000 024 0.282 682 2.00 0.86 797 1 135 J03-8-1-07 0.083 403 0.002 975 0.282 678 0.000 033 0.282 664 1.36 1.17 859 1 175 J03-8-1-08 0.028 742 0.001 124 0.282 667 0.000 022 0.282 662 1.28 0.79 831 1 180 J03-8-1-09 0.036 504 0.001 267 0.282 700 0.000 024 0.282 694 2.40 0.85 788 1 109 J03-8-1-10 0.043 663 0.001 687 0.282 671 0.000 028 0.282 664 1.33 0.98 838 1 177 J03-8-1-11 0.060 723 0.002 254 0.282 684 0.000 021 0.282 674 1.70 0.76 832 1 154 J03-8-1-12 0.030 108 0.001 176 0.282 634 0.000 021 0.282 629 0.11 0.73 879 1 255 J03-8-1-13 0.028 188 0.001 085 0.282 725 0.000 023 0.282 720 3.34 0.80 748 1 050 J03-8-1-14 0.021 363 0.000 825 0.282 483 0.000 021 0.282 479 -5.20 0.73 1 083 1 590 J03-8-1-15 0.056 724 0.002 154 0.282 795 0.000 029 0.282 785 5.64 1.03 668 903 J03-8-1-16 0.038 010 0.001 430 0.282 636 0.000 033 0.282 629 0.12 1.15 883 1 254 J03-8-1-17 0.061 538 0.002 301 0.282 682 0.000 026 0.282 671 1.61 0.92 837 1 160 J03-8-1-18 0.080 442 0.002 908 0.282 714 0.000 024 0.282 701 2.65 0.85 803 1 093 J03-8-1-19 0.032 634 0.001 254 0.282 678 0.000 026 0.282 672 1.63 0.90 819 1 158 J03-8-2-01 0.036 919 0.000 956 0.282 704 0.000 034 0.282 700 2.23 1.20 775 1 106 J03-8-2-02 0.058 048 0.001 413 0.282 784 0.000 025 0.282 778 4.98 0.87 671 932 J03-8-2-03 0.050 658 0.001 269 0.282 743 0.000 028 0.282 738 3.57 1.00 726 1 021 J03-8-2-04 0.036 283 0.000 944 0.282 728 0.000 026 0.282 725 3.09 0.91 741 1 052 J03-8-2-05 0.031 344 0.000 750 0.282 729 0.000 024 0.282 726 3.16 0.85 735 1 048 J03-8-2-06-1幔 0.027 832 0.000 752 0.282 734 0.000 028 0.282 730 3.30 0.99 730 1 038 J03-8-2-06-2核 0.124 967 0.004 544 0.282 829 0.000 027 0.282 810 6.12 0.94 662 859 J03-8-2-07 0.069 408 0.002 049 0.282 901 0.000 032 0.282 893 9.03 1.13 512 673 J03-8-2-08 0.047 067 0.001 334 0.282 747 0.000 026 0.282 742 3.70 0.92 721 1 013 J03-8-2-9 0.048 853 0.001 671 0.282 760 0.000 027 0.282 753 4.10 0.94 710 988 J03-8-2-10 0.040 507 0.001 425 0.282 692 0.000 020 0.282 687 1.75 0.70 802 1 137 J03-8-2-11 0.069 663 0.002 350 0.282 786 0.000 027 0.282 777 4.93 0.97 685 934 J03-8-2-12 0.034 146 0.001 232 0.282 679 0.000 029 0.282 674 1.29 1.03 817 1 166 J03-8-2-13 0.102 195 0.003 548 0.282 789 0.000 034 0.282 775 4.87 1.20 704 939 J03-8-2-14-1核 0.063 694 0.002 336 0.282 838 0.000 022 0.282 829 6.78 0.79 608 817 J03-8-2-14-2幔 0.051 092 0.001 973 0.282 645 0.000 017 0.282 637 -0.01 0.61 882 1 248 J03-8-2-15 0.058 644 0.002 140 0.282 783 0.000 026 0.282 774 4.85 0.91 685 940 J03-8-2-16 0.088 017 0.003 167 0.282 698 0.000 022 0.282 685 1.71 0.78 832 1 139 J03-8-2-17 0.029 419 0.001 128 0.282 669 0.000 019 0.282 664 0.96 0.67 828 1 187 注:(176Hf/177Hf)i表示Hf同位素初始比值;tDM1表示相对亏损地幔的Hf模式年龄;tDM2表示Hf同位素两阶段模式年龄,采用平均大陆壳176Lu/177Hf=0.015( Griffin et al, 2002 )进行计算. -
[1] Bo, D.Y., Huang, J.Z., Wang, X.H., et al., 2006. Sinistral strike-slip motion of the NW-trending Shaoyang-Chenzhou fault and genesis of the N-S-trending Shuikoushan-Xianghualing tectonic zone in Hunan. Geology in China, 33(1): 56-63 (in Chinese with English abstract). http://www.researchgate.net/publication/298603250_Sinistral_strike-slip_motion_of_the_NW-trending_Shaoyang-Chenzhou_fault_and_genesis_of_the_N-S-trending_Shuikoushan-Xianghualing_tectonic_zone_in_Hunan?ev=auth_pub [2] Blilchert-Toft, J., Albarède, F., 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243-258. doi: 10.1016/S0012-821X(97)00040-X [3] Boynton, W.V., 1984. Geochemistry of the rare earth elements: meteorite studies. In: Henderson, P., ed., Rare earth element geochemistry. Elsevier, 63-114. [4] Cai, J.X., Zhang, K.J., 2009. A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic. Tectonophysics, 467(1-4): 35-43. doi: 10.1016/j.tecto.2008.12.003 [5] Carter, A., Clift, P.D., 2008. Was the Indosinian orogeny a Triassic mountain building or a thermotectonic reactivation event? C.R. Geoscience, 340(2-3): 83-93. doi: 10.1016/j.crte.2007.08.011 [6] Carter, A., Roques, D., Bristow, C., et al., 2001. Understanding Mesozoic accretion in Southeast Asia: significance of Triassic thermotectonism (Indosinian orogen) in Vietnam. Geology, 29(3): 211-214. doi: 10.1130/0091-7613(2001)029<0211:UMAISA>2.0.CO;2 [7] Chen, C.H., Lu, H.Y., Lin, W., et al., 2006. Thermal event records in SE China coastal areas: constraints from Monazite ages of beach sands from two sides of the Taiwan Strait. Chemical Geology, 231(1-2): 118-134. doi: 10.1016/j.chemgeo.2006.01.023 [8] Chen, W.F., Chen, P.R., Huang, H.Y., et al., 2007. Chronological and geochemical studies of granite and enclave in Baimashan pluton, Hunan, South China. Science in China (Series D), 50(11): 1606-1627. doi: 10.1007/s11430-007-0073-1 [9] Connelly, J.N., 2001. Degree of preservation of igneous zonation in zircon as a signpost for concordancy in U/Pb geochronology. Chemical Geology, 172(1-2): 25-39. doi: 10.1016/S0009-2541(00)00234-5 [10] Dai, B.Z., Jiang, S.Y., Jiang, Y.H., 2008. Geochronology, geochemistry and Hf-Sr-Nd isotopic compositions of Huziyan mafic xenoliths, southern Hunan Province, South China: petrogenesis and implications for lower crust evolution. Lithos, 102(1-2): 65-87. doi: 10.1016/j.lithos.2007.08.010 [11] Deng, X.G., Chen, Z.G., Li, X.H., et al., 2004. SHRIMP U-Pb zircon dating of the Darongshan-Shiwandashan granitoid belt in southeastern Guangxi, China. Geological Review, 50(4): 426-432 (in Chinese with English abstract). http://www.researchgate.net/publication/284676240_SHRIMP_U-Pb_zircon_dating_of_the_Darongshan-Shiwandashan [12] Ding, X., Chen, P.R., Chen, W.F., et al., 2005. Single zircon LA-ICPMS U-Pb dating of Weishan granite (Hunan, South China) and its petrogenetic significance. Science in China (Series D), 35(7): 606-616 (in Chinese). [13] Faure, M., Lin, W., Schärer, U., et al., 2003. Continental subduction and exhumation of UHP rocks: structural and geochronological insights from the Dabieshan (East China). Lithos, 70(3-4): 213-241. doi: 10.1016/S0024-4937(03)00100-2 [14] Ferrari, O.M., Hochard, C., Stampfli, G.M., 2008. An alternative plate tectonic model for the Palaeozoic-Early Mesozoic Palaeotethyan evolution of Southeast Asia (northern Thailand-Burma). Tectonophysics, 451(1-4): 346-365. doi: 10.1016/j.tecto.2007.11.065 [15] Gao, S., Ling, W.L., Qiu, Y.M., et al., 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochimica et Cosmochimica Acta, 62(13-14): 2071-2088. doi: 10.1016/S0016-7037(99)00153-2 [16] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002. Zircon chemistry and magma mixing, SE China: insitu analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237-269. doi: 10.1016/S0024-4937(02)00082-8 [17] Guo, F., Fan, W.M., Lin, G., et al., 1997. Sm-Nd dating and petrogenesis of Mesozoic gabbro xenolith in Daoxian County, Hunan Province. Chinese Science Bulletin, 42(21): 1814-1816. doi: 10.1007/BF02882650 [18] HNGBMR (Bureau of Geology and Mineral Resources of Hunan Province), 1988. Regional geology of the Hunan Province. Geological Publishing House, Beijing, 286-507 (in Chinese). [19] Janney, P.E., Le Roex, A.P., Carlson, R.W., 2005. Hafnium isotope and trace element constraints on the nature of mantle heterogeneity beneath the central Southwest Indian ridge (13°E to 47°E). Journal of Petrology, 46(12): 2427-2464. doi: 10.1093/petrology/egi060 [20] Li, S.X., Yun, P., Fan, Y., et al., 2005. Zircon U-Pb age and its geological significance for Qiongzhong pluton in Qiongzhong area, Hainan Island. Geotectonica et Metallogenia, 29(2): 227-233, 241 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200502009.htm [21] Li, X.H., Li, W.X., Li, Z.X., et al., 2008.850-790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: a major episode of continental rift magmatism during the breakup of Rodinia. Lithos, 102(1-2): 341-357. doi: 10.1016/j.lithos.2007.04.007 [22] Li, X.H., Li, Z.X., Ge, W.C., et al., 2003. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? Precambrian Research, 122(1-4): 45-83. doi: 10.1016/S0301-9268(02)00207-3 [23] Li, X.H., Li, Z.X., Li, W.X., et al., 2006. Initiation of the Indosinian orogeny in South China: evidence for a Permian magmatic arc on Hainan Island. The Journal of Geology, 114(3): 341-353. doi: 10.1086/501222 [24] Li, Z.X., Li, X.H., 2007. Formation of the 1 300 km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. Geology, 35(2): 179-182. doi: 10.1130/G23193A.1 [25] Liang, X.Q., Li, X.H., 2005. Late Permian to Middle Triassic sedimentary records in Shiwandashan basin: implication for the IndosinianYunkai orogenic belt, South China. Sedimentary Geology, 177(3-4): 297-320. doi: 10.1016/j.sedgeo.2005.03.009 [26] Liang, X.Q., Li, X.H., Qiu, Y.X., et al., 2005. Indosinian collisional orogeny: evidence from structural and sedimentary geology in Shiwandashan basin, South China. Geotectonica et Metallogenia, 29(1): 99-112 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK20050100D.htm [27] Ling, H.F., Shen, W.Z., Deng, P., et al., 2005. Study of geochemistry and petrogenesis of the Maofeng granites, northern Guangdong Province. Acta Petrologica Sinica, 21(3): 677-687 (in Chinese with English abstract). http://www.oalib.com/paper/1471827 [28] Lou, F.S., Shen, W.Z., Wang, D.Z., et al., 2005. Zircon U-Pb isotopic chronology of the Wugongshan dome compound granite in Jiangxi Province. Acta Geologica Sinica, 79(5): 636-644 (in Chinese with English abstract). http://www.researchgate.net/publication/279551557_Zircon_U-Pb_isotopic_chronology_of_the_Wugongshan_dome_compound_granite_in_Jiangxi_Province [29] Luo, Z.G., Wang, Y.J., Zhang, F.F., et al., 2010. LA-ICPMS zircon U-Pb dating for Baimashan and Jintan Indosinian granitic plutons and its petrogenetic implications. Geotectonica et Metallogenia, 34(2): 282-290 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DGYK201002017&dbcode=CJFD&year=2010&dflag=pdfdown [30] Mezger, K., Krogstad, E.J., 1997. Interpretation of discordant U-Pb zircon ages: an evaluation. Journal of Metamorphic Geology, 15(1): 127-140. doi: 10.1111/j.1525-1314.1997.00008.x [31] Pearce, J.A., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth, C.J., Norry, M.J., eds., Continental basalts and mantle xenoliths. 230-249. [32] Pearce, J.A., Kempton, P.D., Nowell, G.M., et al., 1999. Hf-Nd element and isotope perspective on the nature and provenance of mantle and subduction components in western Pacific arc-basin systems. Journal of Petrology, 40(11): 1579-1611. doi: 10.1093/petroj/40.11.1579 [33] Peng, B.X., Wang, Y.J., Fan, W.M., et al., 2006. LA-ICPMS zircon U-Pb dating for three Indosinian granitic plutons from central Hunan and western Guangdong provinces and its petrogenetic implications. Acta Geologica Sinica, 80(5): 660-669. doi: 10.1111/j.1755-6724.2006.tb00290.x [34] Polat, A., Münker, C., 2004. Hf-Nd isotope evidence for contemporaneous subduction processes in the source of Late Archean arc lavas from the Superior Province, Canada. Chem. Geol. , 213(4): 403-429. doi: 10.1016/j.chemgeo.2004.08.016 [35] Rao, J.R., Wang, J.H., Cao, Y.Z., 1993. Deep structure in Hunan. Hunan Geology, 7(Suppl. ): 1-101 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNDZ1993S1000.htm [36] Shu, L.S., Faure, M., Wang, B., et al., 2008. Late Palaeozoic-Early Mesozoic geological features of South China: response to the Indosinian collision events in Southeast Asia. C.R. Geoscience, 340(2-3): 151-165. doi: 10.1016/j.crte.2007.10.01 [37] Shu, L.S., Sun, Y., Wang, D.Z., et al., 1998. Mesozoic doming extensional tectonics of Wugongshan, South China. Science in China (Series D), 41(6): 601-608. doi: 10.1007/BF02878742 [38] Sun, T., 2006. A new map showing the distribution of granites in South China and its explanatory notes. Geologcal Bulletin of China, 25(3): 332-335 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200603002.htm [39] Sun, T., Zhou, X.M., Chen, P.R., et al., 2003. Mesozoic strongly peraluminous granites from eastern Nanling range, South China: petrogenesis and implications for tectonics. Sciences in China (Series D), 48(2): 165-174. [40] Sylvester, P.J., 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4): 29-44. doi: 10.1016/S0024-4937(98)00024-3 [41] TGRGNP (The Granitoid Research Group of Nanling Project), Ministry of Geology and Mineral Resources, 1989. Geology of granitoids of Nanling region and their petrogenesis and mineralization. Geological Publishing House, Beijing, 18-66 (in Chinese). [42] Vervoort, J.D., Blichert-Toft, J., 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta, 63(3-4): 533-556. doi: 10.1016/S0016-7037(98)00274-9 [43] Wang, D.Z., Shen, W.Z., 2003. Genesis of granitoids and crustal evolution in Southeast China. Earth Science Frontiers, 10(3): 209-220 (in Chinese with English abstract). http://www.researchgate.net/publication/284543906_Genesis_of_granitoids_and_crustal_evolution_in_southeast_China [44] Wang, Q., Li, J.W., Jian, P., et al., 2005a. Alkaline syenites in eastern Cathaysia (South China): link to Permian-Triassic transtension. Earth and Planetary Science Letters, 230(3-4): 339-354. doi: 10.1016/j.epsl.2004.11.023 [45] Wang, Y.J., Zhang, Y.H., Fan, W.M., et al., 2005b. Structural signatures and 40Ar/39Ar geochronology of the Indosinian Xuefengshan tectonic belt, South China block. Journal of Structural Geology, 27(6): 985-998. doi: 10.1016/j.jsg.2005.04.004 [46] Wang, Y.J., Fan, W.M., Liang, X.Q., et al., 2005c. SHRIMP U-Pb zircon dating of the Indo-Sinian granitoids in Hunan Province and its petrogenetic implications. Chinese Science Bulletin, 50(12): 1259-1266 (in Chinese). doi: 10.1360/972004-603 [47] Wang, Y.J., Fan, W.M., Sun, M., et al., 2007. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China block: a case study in the Hunan Province. Lithos, 96(3-4): 475-502. doi: 10.1016/j.lithos.2006.11.010 [48] Weislogel, A.L., Graham, S.A., Chang, E.Z., et al., 2006. Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex: sedimentary record of collision of the North and South China blocks. Geology, 34(2): 97-100. doi: 10.1130/G21929.1 [49] Wu, R.X., Zheng, Y.F., Wu, Y.B., et al., 2006. Reworking of juvenile crust: element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Research, 146(3-4): 179-212. doi: 10.1016/j.precamres.2006.01.012 [50] Xie, C.F., Zhu, J.C., Zhao, Z.J., et al., 2005. Zircon SHRIMP U- Pb age dating of garnet-acmite syenite: constraints on the Hercynian-Indosinia tectonic evolution of Hainan Island. Geological Journal of China Universities, 11(1): 47-57 (in Chinese with English abstract). http://www.researchgate.net/publication/285277663_Zircon_SHRIMP_U-Pb_age_of_the_Sanya_garnet-acmite_syenite_Constraints_on_the_Hercynian-Indosinian_tectonic_evolution_of_Hainan_Island [51] Xie, C.F., Zhu, J.C., Ding, S.J., et al., 2006. Identification of Hercynian shoshonitic intrusive rocks in central Hainan Island and its geotectonic implications. Chinses Science Bulletin, 51(20): 2507-2519. doi: 10.1007/s11434-006-2122-0 [52] Xu, P., Wu, F.Y., Xie, L.W., et al., 2004. Hf isotope compositions of the standard zircons for U-Pb dating. Chinese Science Bulletin, 49(14): 1403-1410 (in Chinese). doi: 10.1360/csb2004-49-14-1403 [53] Xu, X.S., Deng, P., O'Reilly, S.Y., et al., 2003. LAM-ICPMS U-Pb single zircon dating of the Guidong complex (SE China) and its petrogenetic significance. Chinese Science Bulletin, 48(17): 1892-1899 (in Chinese). doi: 10.1007/BF03184074 [54] Xu, X.S., O'Reilly, S.Y., Griffin, W.L., et al., 2007. The crust of Cathaysia: age, assembly and reworking of two terranes. Precambrian Research, 158 (2007): 51-78. http://www.sciencedirect.com/science/article/pii/S0301926807001155 [55] Yu, J.H., O'Reilly, S.Y., Zhao, L., et al., 2007. Origin and evolution of topaz-bearing granites from the Nanling Range, South China: a geochemical and Sr-Nd-Hf isotopic study. Mineralogy and Petrology, 90(3-4): 271-300. doi: 10.1007/s00710-006-0180-2 [56] Yuan, H.L., Wu, F.Y., Gao, S., et al., 2003. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS. Chinese Sci Bull, 48(22): 2411-2421. http://www.cqvip.com/QK/86894X/200322/8806935.html [57] Zhang, H.F., Xu, W.C., Guo, J.Q., et al., 2007. Indosinian orogenesis of the Gangdise terrane: evidences from zircon U-Pb dating and petrogenesis of granitoids. Earth Science—Journal of China University of Geosciences, 32(2): 155-166 (in Chinese with English abstract). [58] Zhang, H.X., Sun, D.Z., Zhu, B.Q., et al., 2000. Pb, Nd isotopic study of Proterozoic metamorphic sediments in North Jiangxi and its tectonic significance. Regional Geology of China, 19(1): 66-71 (in Chinese with English abstract). [59] Zhang, W.L., Hua, R.M., Wang, R.C., et al., 2004. Single Zircon U-Pb isotopic age of the Wuliting granite in Dajishan area of Jiangxi, and its geological implication. Acta Geologica Sinica, 78(3): 352-358 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200403007.htm [60] Zheng, Y.F., Wu, R.X., Wu, Y.B., et al., 2008. Rift melting of juvenile arc-derived crust: geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan origen, South China. Precambrian Research, 163(3-4): 351-383. doi: 10.1016/j.precamres.2008.01.004 [61] Zheng, Y.F., Zhang, S.B., Zhao, Z.F., et al., 2007. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: implications for growth and reworking of continental crust. Lithos, 96(1-2): 127-150. doi: 10.1016/j.lithos.2006.10.003 [62] Zhong, Y.F., 2007. Petrogenesis and geological significance of Jiuling granitic complex batholith in northern Jiangxi Province (Dissertation). China University of Geosciences, Wuhan (in Chinese). [63] Zhong, Y.F., Ma, C.Q., She, Z.B., et al., 2007. Study on source rocks of Jiuling Neoproterozoic granitoids in northern Jiangxi Province. Journal of China University of Geosciences, 18(Special Issuse): 458-460. http://www.researchgate.net/publication/296109684_Study_on_source_rocks_of_Jiuling_Neoproterozoic_granitoids_in_Northern_Jiangxi_Province [64] Zhou, X.M., 2003. My thinking about granite genesis of South China. Geological Journal of University, 9(4): 556-565 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200304008.htm [65] Zhou, X.M., Chen, P.R., Xu, X.S., et al., 2007. Petrogenesis of the Mesozoic granites and the dynamic evolution of lithosphere in Nanling region. Science Press, Beijing (in Chinese). [66] Zhou, X.M., Sun, T., Shen, W.Z., et al., 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution. Episodes, 29: 26-33. doi: 10.18814/epiiugs/2006/v29i1/004 [67] 柏道远, 黄建中, 王先辉, 等, 2006. 湖南邵阳-郴州北西向断裂左旋走滑暨水口山-香花岭南北向构造成因. 中国地质, 33(1): 56-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200601005.htm [68] 陈卫锋, 陈培荣, 黄宏业, 等, 2007. 湖南白马山岩体花岗岩及其包体的年代学和地球化学研究. 中国科学(D辑), 37(7): 873-893. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200707002.htm [69] 邓希光, 陈志刚, 李献华, 等, 2004. 桂东南地区大容山-十万大山花岗岩带SHRIMP锆石U-Pb定年. 地质论评, 50(4): 426-432. doi: 10.3321/j.issn:0371-5736.2004.04.014 [70] 地矿部南岭项目花岗岩专题组, 1989. 南岭花岗岩地质及其成因和成矿作用. 北京: 地质出版社, 18-66. [71] 丁兴, 陈培荣, 陈卫锋, 等, 2005. 湖南沩山花岗岩中锆石LA-ICPMS U-Pb定年: 成岩启示和意义. 中国科学(D辑), 35(7): 606-616. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200507001.htm [72] 郭锋, 范蔚茗, 林舸, 等, 1997. 湘南道县辉长岩包体的年代学研究及成因探讨. 科学通报, 42(15): 1661-1664. doi: 10.3321/j.issn:0023-074X.1997.15.022 [73] 湖南省地质矿产局, 1988. 湖南省区域地质志. 北京: 地质出版社, 286-507. [74] 李孙雄, 云平, 范渊, 等, 2005. 海南岛琼中地区琼中岩体锆石U-Pb年龄及其地质意义. 大地构造与成矿学, 29(2): 227-233, 241. doi: 10.3969/j.issn.1001-1552.2005.02.010 [75] 梁新权, 李献华, 丘元禧, 等, 2005. 华南印支期碰撞造山——十万大山盆地构造和沉积学证据. 大地构造与成矿学, 29 (1): 99-112. doi: 10.3969/j.issn.1001-1552.2005.01.014 [76] 凌洪飞, 沈渭洲, 邓平, 等, 2005. 粤北帽峰花岗岩体地球化学特征及成因研究. 岩石学报, 21(3): 677-687. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503010.htm [77] 楼法生, 沈渭洲, 王德滋, 等, 2005. 江西武功山穹隆复式花岗岩的锆石U-Pb年代学研究. 地质学报, 79(5): 636-644. doi: 10.3321/j.issn:0001-5717.2005.05.008 [78] 罗志高, 王岳军, 张菲菲, 等, 2010. 金滩和白马山印支期花岗岩体LA-ICPMS锆石U-Pb定年及其成岩启示. 大地构造与成矿学, 34(2): 282-290. doi: 10.3969/j.issn.1001-1552.2010.02.015 [79] 饶家荣, 王纪恒, 曹一中, 1993. 湖南深部构造. 湖南地质, 7(增刊): 1-101. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDZ1993S1000.htm [80] 时章亮, 张宏飞, 蔡宏明, 2009. 松潘造山带马尔康强过铝质花岗岩的成因及其构造意义. 地球科学——中国地质大学学报, 34(4): 569-584. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200904003.htm [81] 舒良树, 孙岩, 王德滋, 等, 1998. 华南武功山中生代伸展构造. 中国科学(D辑), 28(5): 431-438. doi: 10.3321/j.issn:1006-9267.1998.05.003 [82] 孙涛, 2006. 新编华南花岗岩分布图及其说明. 地质通报, 25(3): 332-335. doi: 10.3969/j.issn.1671-2552.2006.03.002 [83] 孙涛, 周新民, 陈培荣, 等, 2003. 南岭东段中生代过铝花岗岩成因及其大地构造意义. 中国科学(D辑), 33(12): 1209-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200312009.htm [84] 王德滋, 沈渭洲, 2003. 中国东南部花岗岩成因与地壳演化. 地学前缘, 10(3): 209-220. doi: 10.3321/j.issn:1005-2321.2003.03.020 [85] 王岳军, 范蔚茗, 梁新权, 等, 2005. 湖南印支期花岗岩SHRIMP锆石U-Pb年龄及其成因启示. 科学通报, 50(12): 1259-1266. doi: 10.3321/j.issn:0023-074X.2005.12.018 [86] 徐夕生, 邓平, S.Y. O'Reilly, 等, 2003. 华南贵东杂岩体单颗粒锆石激光探针ICPMS U-Pb定年及其成岩意义. 科学通报, 48(12): 1328-1334. doi: 10.3321/j.issn:0023-074X.2003.12.020 [87] 谢才富, 朱金初, 赵子杰, 等, 2005. 三亚石榴霓辉石正长岩的锆石SHRIMPU U-Pb年龄: 对海南岛海西-印支期构造演化的制约. 高校地质学报, 11(1): 47-57. doi: 10.3969/j.issn.1006-7493.2005.01.003 [88] 谢才富, 朱金初, 丁式江, 等, 2006. 琼中海西期钾玄质侵入岩的厘定及其构造意义. 科学通报, 51(16): 1944-1954. doi: 10.3321/j.issn:0023-074X.2006.16.014 [89] 徐平, 吴福元, 谢烈文, 等, 2004. U-Pb同位素定年标准锆石的Hf同位素. 科学通报, 49(14): 1403-1410. doi: 10.3321/j.issn:0023-074X.2004.14.012 [90] 袁洪林, 吴福元, 高山, 等. 2003. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析. 科学通报, 8(14): 1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008 [91] 张海祥, 孙大中, 朱炳泉, 等, 2000. 赣北元古代变质沉积岩的铅钕同位素特征. 中国区域地质, 19(1): 66-71. doi: 10.3969/j.issn.1671-2552.2000.01.011 [92] 张宏飞, 徐旺春, 郭建秋, 等, 2007. 冈底斯印支期造山事件: 花岗岩类锆石U-Pb年代学和岩石成因证据. 地球科学——中国地质大学学报, 32(2): 155-166. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200702001.htm [93] 张文兰, 华仁民, 王汝成, 等, 2004. 江西大吉山五里亭花岗岩单颗粒锆石U-Pb同位素年龄及其地质意义探讨. 地质学报, 78(3): 352-358. doi: 10.3321/j.issn:0001-5717.2004.03.008 [94] 钟玉芳, 2007. 赣北地区九岭复式花岗岩基的成因及成岩意义(博士学位论文). 武汉: 中国地质大学. [95] 周新民, 2003. 对华南花岗岩研究的若干思考. 高校地质学报, 9(4): 556-565. doi: 10.3969/j.issn.1006-7493.2003.04.009 [96] 周新民, 陈培荣, 徐夕生, 等, 2007. 南岭地区中生代花岗岩成因与岩石圈动力学演化. 北京: 科学出版社