Chemical Characteristics and Seasonal Variation of Snow on Urumqi Glacier No.1 of the Eastern Tianshan, China
-
摘要: 高海拔雪冰可以记录源自于地球表面的各种化学物质信号.从2002年9月到2005年10月3年的时段内,在天山乌鲁木齐河源1号冰川积累区采集积雪样品,运用比较法、相关分析法等方法,对其中主要离子、不溶粉尘、痕量金属和δ18O等特征及其季节变化进行了分析研究.分析结果表明,积雪离子浓度大小顺序依次为:Ca2+>SO42->NO3->Cl->NH4+>Mg2+>Na+>K+,其中Ca2+是主要的阳离子,SO42-是主要的阴离子.离子相关性分析表明,除NO3-之外,其他离子浓度之间均存在较好的正相关.积雪中δ18O值随时间变化表现出与大气温度变化相反的规律.积雪中不溶粉尘和主要化学离子浓度具有明显的季节变化特征,春季期间浓度明显高于其他季节,表明沙尘活动对冰川区化学物质输入有较大贡献;此外,痕量金属(Cd、Pb、Zn、Al、Fe)季节变化特征表明,人类活动的污染物对于研究区雪冰中的化学特征亦有重要影响.Abstract: Alpine glacier and snow can record signals of surface earth. From September 2002 to October 2005, Surface snow samples were collected on Urumqi glacier No.1 and chemical characteristics and seasonal variations of major ions, dust, and metal were measured. Results show that the concentration of major ions is Ca2+ > SO42- > NO3- > Cl- > NH4+ > Mg2+ > Na+ > K+, Ca2+ is the dominant cation, SO42- is the dominant anion. All ions have good correlation except NO3-. δ18O shows minus correlation with air temperature change. Dust and major ionic concentrations in the snow show obvious seasonal change trend, with higher concentrations in spring but lower ones in summer, which indicates the chemical input of dust activities to snow. Temporal changes of heavy metal (Cd, Pb, Zn, Al, Fe) indicate that human activities also have effect on the snow chemistry.
-
Key words:
- glacial geology /
- environmental effects /
- chemical features /
- seasonal change /
- material sources
-
表 1 表层积雪中主要化学要素浓度的比较
Table 1. δ18O and major ion concentrations, ECM, pH in surface snow samples
年 Dust (103#/mL) pH ECM (μs/cm) δ18O(‰) 离子浓度(μg/L) 离子总浓度(μg/L) Mg2+ Ca2+ Na+ K+ Cl- SO42- NO3- NH4+ 2002—2003 408 5.6 3.1 -12.8 108.5 842.9 71.4 31.3 208.6 556.7 355.3 146.4 2 308.3 2003—2004 1 094 5.5 3.6 -18.3 189.8 1 829.3 64.5 46.4 354.5 619.3 404.2 189.5 3 679.2 2004—2005 327 5.5 2.09 -24.9 102.5 1 793.2 86.9 48.6 209.4 468.6 316.4 186.4 3 187.1 平均 609 5.5 2.93 -18.6 133.6 1 488.4 74.3 42.1 257.5 548.2 358.6 174.1 3 058.2 表 2 研究区粉尘、pH、电导率以及主要阴阳离子相关性对比
Table 2. Correlation coefficient of major ions, pH, ECM and dust in the snowpits
Cl- NO3- SO42- Na+ NH4+ K+ Mg2+ Ca2+ pH ECM NO3- 0.78 - SO42- 0.64 0.82 - Na+ 0.90 0.53 0.69 - NH4+ 0.73 0.83 0.96 0.56 - K+ 0.70 0.20 0.41 0.54 0.60 - Mg2+ 0.79 0.28 0.67 0.79 0.83 0.88 - Ca2+ 0.51 0.27 0.74 0.84 0.82 0.78 0.94 - pH 0.42 0.16 0.89 0.42 0.26 0.16 0.66 0.23 - ECM 0.52 0.18 0.83 0.72 0.46 0.62 0.75 0.94 0.87 - Dust 0.78 0.39 0.75 0.58 0.36 0.41 0.79 0.96 0.70 0.90 -
[1] Aizen, E.M., Aizen, V.B., Melack, J.M., et al., 2001. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. International Journal of Climatology, 21(5): 535-556. doi: 10.1002/joc.626 [2] Aizen, V.B., Aizen, E.M., Melack, J.M., et al., 2004. Association between atmospheric circulation patterns and firn-ice core records from the Inilchek glacierized area, central Tien Shan, Asia. Journal of Geophysical Research, 109(D8)D08304. doi: 10.1029/2003JD003894 [3] Andersen, H.V., Hovmand, M.F., Hummelshoj, P., et al., 1999. Measurements of ammonia concentrations, fluxes and dry deposition velocities to a spruce forest 1991-1995. Atmospheric Environment, 33(9): 1367-1383. doi: 10.1016/S1352-2310(98)00363-X [4] Dong, Z.W., Li, Z.Q., Wang, F.T., et al., 2009. Characteristics of atmospheric dust deposition in snow on the glaciers of the eastern Tien Shan, China. Journal of Glaciology, 55(193): 797-804. doi: 10.3189/002214309790152393 [5] Dong, Z.W., Li, Z.Q., Wang, F.T., et al., 2009. Characteristics of atmospheric dust deposited in snow on Urumqi Glacier No. 1 of eastern Tian Shan, China: a comparison of measurements during Asian dust period with non-dust period. Environmental Sciences, 30(6): 240-247 (in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/19662874/ [6] Eichler, A., Schwikowski, M., Gäggeler, H.W., 2001. Meltwater induced relocation of chemical species in Alpine firn. Tellus, 53(2): 192-203. doi: 10.1034/j.1600-0889.2001.d01-15.x [7] Fuhrer, K., Albrecht, N., Martin, A., et al., 1996. High-resolution ammonium ice core record covering a complete glacial-interglacial cycle. Journal of Geophysical Research, 101(D2): 4147-4164. doi: 10.1029/95JD02903 [8] Gao, Y., Arimoto, R., Zhou, M.Y., et al., 1992. Relationships between the dust concentrations over eastern Asia and the remote North Pacific. Journal of Geophysical Research, 97(D9): 9867-9872. doi: 10.1029/92JD00714 [9] Ginot, P., Kull, C., Schwikowski, M., et al., 2001. Effects of postdepositional processes on snow composition of a subtropical glacier (Cerro Tapado, Chilean Andes). Journal of Geophysical Research, 106(D23): 32375-32386. doi: 10.1029/2000JD000071 [10] Hou, S.G., Qin, D.H., Ren, J.W., et al., 1999. The present environmental processes of the pH and conductivity records in the glacier No. 1 at the headwaters of Urumqi River, Tianshan Mountains. Journal of Glaciology and Geocryology, 21(3): 225-232 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BCDT199903005.htm [11] Karl, J.K., Edward, R.S., 2000. Major element, rare earth element, and sulfur isotopic composition of a high-elevation firn core: sources and transport of mineral dust in central Asia. Geochemistry Geophysics Geosystems, 1(13): 2000GC000082. doi: 10.1029/2000GC000082 [12] Lee, X., Qin, D., Jiang, G., et al., 2003. Atmospheric pollution of a remote area of Tianshan Mountain: ice core record. Journal of Geophysical Research, 108(D14): 4406-4416. doi: 10.1029/2002JD002181 [13] Li, J.F., 1991. The climate of Xinjiang. Meteorology Press, Beijing, 5-73 (in Chinese). [14] Li, Z.Q., Edwards, R., Thompson, E.M., et al., 2006. Seasonal variability of ionic concentrations in surface snow and elution processes in snow-firn packs at the PGPI site on Vrümqi glacier No. 1, eastern Tien Shan, China. Annals of Glaciology, 43(1): 250-256. doi: 10.3189/172756406781812069 [15] Li, Z.Q., Li, C.J., Li, Y.F., et al., 2007. Preliminary results from measurements of selected trace metals in the snow-firn pack on Vrümqi glacier No. 1, eastern Tien Shan, China. Journal of Glaciology, 53(182): 368-373. doi: 10.3189/002214307783258486 [16] Li, Z. Q, Lu, G.X., Liu, B.Z., et al., 1999. Ice core dust particulate by XPS-SEM/ED AX: impact of dust particulate on SO42- record in ice cores. Chinese Science Bulletin, 44(15): 1424-1427. doi: 10.1007/BF02885997 [17] Li, Z.Q., Yao, T.D., Xie, Z.C., 1995. Modern atmospheric environmental records in Guliya Ice Cap of Qinghai-Xizang Plateau. Chinese Science Bulletin, 40(10): 874. [18] Mori, I., Nishikawa, M., Tanimura, T., et al., 2003. Change in size distribution and chemical composition of kosa (Asian dust) aerosol during long-range transport. Atmospheric Environment, 37(30): 4253-4263. doi: 10.1016/S1352-2310(03)00535-1 [19] Olivier, S., Blaser, C., Brutsch, S., et al., 2006. Temporal variations of mineral dust, biogenic tracers, and anthropogenic species during the past two centuries from Belukha ice core, Siberian Altai. Journal of Geophysical Research, 111(D5)D0539. doi: 10.1029/2005JD005830 [20] Schotterer, U., Stichler, W., Ginot, P., 2004. The influence of post-depositional effects on ice core studies: examples from the Alps, Andes, and Altai. In: De Wayne Cecil, L., Green. J.R., Thompson, L.G., eds., Earth paleoenvironments: records preserved in mid- and low-latitude glaciers. Dordrecht, etc., Kluwer, 39-59. doi: 10.1007/1-4020-2146-1_3 [21] Stichler, W., Schotterer, U., Fröhlich, K., et al., 2001. Influence of sublimation on stable isotope records recovered from high-altitude glaciers in the tropical Andes. Journal of Geophysical Research, 106(19): 22613-22620. doi: 10.1029/2001JD900179 [22] Wake, C.P., Mayewski, P.A., Li, Z., et al., 1994. Modern eolian dust deposition in central Asia. Tellus, 46(3): 220-233. doi: 10.1034/j.1600-0889.1994.t01-2-00005.x [23] Wake, C.P., Mayewski, P.A., Wang, P., et al., 1992. Anthropogenic sulfate and Asian dust signals in snow from Tien Shan, Northwest China. Annals of Glaciology, 16: 45-52. doi: 10.3189/1992AoG16-1-45-52 [24] Wang, D.H., Zhang, P.Y., 1985. On the valley climate of Urumqi river in the Tianshan Mountain. Journal of Glaciology and Geocryology, 7(3): 239-248 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BCDT198503007.htm [25] Wang, F., Li, Z., You, X., et al., 2006. Seasonal evolution of aerosol stratigraphy in Vrümqi glacier No. 1 percolation zone, eastern Tien Shan, China. Annals of Glaciology, 43(1): 245-249. doi: 10.3189/172756406781812041 [26] Wolff, E.W., Hall, J.S., Mulvaney, R., et al., 1998. Relationship between chemistry of air, fresh snow and firn cores for aerosol species in coastal Antarctica. Journal of Geophysical Research, 103(D9): 11 057-11 070. doi: 10.1029/97JD02613 [27] Yang, S.H., Wu, Y.B., Liu, X.C., et al., 2009. U-Pb Ages of detrital zircon from meta-sedimentary rock from the Huwan shear zone, western Dabie terrain and their geological significance. Earth Science—Journal of China University of Geosciences, 34(1): 179-188 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.016 [28] Yao, T.D., Masson, V., Jouzel, J., et al., 1999. Relationships between δ18O in precipitation and surface air temperature in the Urumqi River basin, East Tianshan Mountains, China. Geophysical Research Letter, 26(23): 3473-3476. doi: 10.1029/1999GL006061 [29] Zhang, Z.G., Fang, N.Q., Du, Y.S., et al., 2009. Geochemical characteristics and their causative mechanism of polymetallic nodules from the Northwest continental margin of the South China Sea. Earth Science—Journal of China University of Geosciences, 34(6): 955-962 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.109 [30] Zhao, Z.P., Li, Z.Q., 2004. Determination of soluble ions in atmospheric aerosol by ion chromatography. Modern Scientific Instruments, 5: 46-49 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDYQ20040500C.htm [31] Zhao, Z.P., Li, Z.Q., Edwards, R., et al., 2006. Atmosphere-to-snow-to-firn transfer of NO3- on Ürümqi glacier No. 1, eastern Tien Shan, China. Annals of Glaciology, 43(1): 239-244. doi: 10.3189/172756406781812410 [32] 董志文, 李忠勤, 王飞腾, 等, 2009. 天山乌鲁木齐河源冰川积雪内不溶粉尘特征: 沙尘与非沙尘活动季节的比较. 环境科学, 30(6): 240-247. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200906045.htm [33] 侯书贵, 秦大河, 任贾文, 等, 1999. 天山乌鲁木齐河源1号冰川pH和电导率记录的现代环境过程. 冰川冻土, 21(3): 225-232. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT199903005.htm [34] 李江风, 1991. 新疆气候. 北京: 气象出版社, 5-73. [35] 李忠勤, 姚檀栋, 谢自楚, 1995. 大气气溶胶中NO3-、SO42-研究. 地球科学进展, 10(3): 289-295. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ503.015.htm [36] 王德辉, 张丕远, 1985. 天山乌鲁木齐河谷气候特征. 冰川冻土, 7(3): 239-248. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198503007.htm [37] 杨赛红, 吴元保, 刘小驰, 等, 2009. 西大别浒湾高压变质带变沉积岩锆石U-Pb年龄及地质意义. 地球科学——中国地质大学学报, 34(1): 179-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200901018.htm [38] 张振国, 方念乔, 杜远生, 等, 2009. 南海西北陆缘多金属结核地球化学特征及成因. 地球科学——中国地质大学学报, 34(6): 955-962. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200906011.htm [39] 赵中平, 李忠勤, 2004. 离子色谱法测定大气气溶胶中的可溶性离子. 现代科学仪器, 5: 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYQ20040500C.htm