• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    冲绳海槽末次冰消期以来的浮游有孔虫群落变化及5种古温度转换函数对比

    向荣 刘芳 孙有斌 陈木宏

    向荣, 刘芳, 孙有斌, 陈木宏, 2011. 冲绳海槽末次冰消期以来的浮游有孔虫群落变化及5种古温度转换函数对比. 地球科学, 36(4): 599-609. doi: 10.3799/dqkx.2011.062
    引用本文: 向荣, 刘芳, 孙有斌, 陈木宏, 2011. 冲绳海槽末次冰消期以来的浮游有孔虫群落变化及5种古温度转换函数对比. 地球科学, 36(4): 599-609. doi: 10.3799/dqkx.2011.062
    XIANG Rong, LIU Fang, SUN You-bin, CHEN Mu-hong, 2011. Changes of Planktonic Foraminiferal Assemblages in the Okinawa Trough since the Last Deglaciation and Comparisons of Sea-Surface Temperature Estimated from Five Foraminiferal Transfer Functions. Earth Science, 36(4): 599-609. doi: 10.3799/dqkx.2011.062
    Citation: XIANG Rong, LIU Fang, SUN You-bin, CHEN Mu-hong, 2011. Changes of Planktonic Foraminiferal Assemblages in the Okinawa Trough since the Last Deglaciation and Comparisons of Sea-Surface Temperature Estimated from Five Foraminiferal Transfer Functions. Earth Science, 36(4): 599-609. doi: 10.3799/dqkx.2011.062

    冲绳海槽末次冰消期以来的浮游有孔虫群落变化及5种古温度转换函数对比

    doi: 10.3799/dqkx.2011.062
    基金项目: 

    海洋沉积与环境地质国家海洋局重点实验室开放课题 MASEG200611

    国家重点基础研究发展计划 2010CB428901

    中国科学院知识创新工程资助项目 KZCX2-YW-211

    中国科学院知识创新工程资助项目 KZCX2-YW-228

    国家自然科学基金项目 40976031

    详细信息
      作者简介:

      向荣(1972-),男,研究员,主要从事微体古生物与海洋沉积古环境研究.E-mail: rxiang@scsio.ac.cn

    • 中图分类号: P736.22

    Changes of Planktonic Foraminiferal Assemblages in the Okinawa Trough since the Last Deglaciation and Comparisons of Sea-Surface Temperature Estimated from Five Foraminiferal Transfer Functions

    • 摘要: 通过对冲绳海槽中部A7孔的浮游有孔虫定量分析,对该区18 ka以来的海洋环境变化进行了探讨.浮游有孔虫群落表现出非常明显的冰消期-全新世阶段变化:在18~15 ka的冰消期早期,浮游有孔虫群落以冷水种Neogloboquadrina dutertreiNeogloboquadrina pachyderma等为主;在15~9.4 ka,浮游有孔虫冷水种含量迅速降低;9.4 ka以来的全新世则以暖水种有孔虫Pulleniatina obliquiloculata,Globigerinoides ruberGlobigerina glutinata等为主.此外,浮游有孔虫群落对千年尺度的气候变化如Heinrich 1、博令-阿罗德暖期(Bølling-Allerød)和新仙女木事件(Younger Dryas)都有明显反映,在全新世还记录了一系列的冷事件(约2.3~4.6、5.3、6.2、7.3和8.2 ka).9.4 ka前后浮游有孔虫冷暖种群的变化可能对应了黑潮暖流的突然加强.采用5种不同浮游有孔虫转换函数对表层海水温度进行了估算,通过与Mg/Ca和U37k'温度估算结果对比,对不同转换函数的可靠性进行了评估.结果发现SIMMAX没有明显的冰消期-全新世变化.另两种基于现代类比技术的转换函数MAT和RAM,其估算结果较类似,13 ka以来的温度波动较小,对新仙女木事件没有明显反映.基于Imbrie-Kipp转换函数(FP-12E和IKM-Chen)的估算结果表现出了较大的冰消期-全新世变化,然而对于博令-阿罗德暖期变暖和新仙女木降温事件没有反映,研究发现这主要由Globigerina bulloides的含量变化造成.通过消除与生产力水平密切相关的G. bulloides的含量变化影响,修正后的两种转换函数FP-12E和IKM-Chen较好地反映了末次冰消期以来的表层海水温度波动,与该区Mg/Ca和U37k'方法重建的古温度有较好的可比性.因此,我们认为修正后的转换函数FP-12E和IKM-Chen更适合冲绳海槽中部的古温度估算.

       

    • 图  1  冲绳海槽A7孔及参考孔站位

      Fig.  1.  Locations of core A7 and two reference cores DGKS9604 and MD982195 in the Okinawa Trough DGKS9604(Yu et al., 2009); MD982195(Ijiri et al., 2005)

      图  2  A7孔G.ruber的氧同位素和Mg/Ca比古温度变化(据Sun et al., 2005)

      氧同位素曲线上方年代为AMS14C测年层位,数字为日历年龄(Cal aBP);YD.新仙女木事件;B/A.Bølling-Allerød暖期

      Fig.  2.  Comparison of δ18O and Mg/Ca-based SST of G. ruber in core A7

      图  3  A7孔主要浮游有孔虫属种相对百分含量变化和Mg/Ca比表层海水温度对比

      虚线.全新世的冷事件;红线.9.4 ka黑潮的增强;PME.普林虫低值事件;YD.新仙女木事件;B/A.博令-阿罗德暖期;H1.Heinrich 1事件;暖水种群.G. ruberG. sacculiferG. glutinataP. obliquiloculataG. conglobatusG. menardiiG. tumida的相对含量之和;冷水种群.N. dutertreiN. pachydermaG. quinquelobaG. inflata的相对含量之和

      Fig.  3.  Variations of relative abundance of dominated planktonic foraminiferal species and their comparisons with Mg/Ca-based SST in core A7

      图  4  A7孔5种不同浮游有孔虫转换函数估算的年均表层海水温度(SSTa)与Mg/Ca比温度的比较

      红色箭头.博令暖期和YD结束时的突然升温;黄色箭头.与Mg/Ca比温度相比的异常升温变化;修正FP-12E和修正IKM-Chen.消除G. bulloides含量变化影响后的转换函数估算结果;YD.新仙女木事件;B/A.Bølling-Allerød暖期

      Fig.  4.  Comparison of average annual SST estimated from 5 foraminiferal transfer functions with Mg/Ca-based SST of G. ruber in core A7

      图  5  A7孔5种不同浮游有孔虫转换函数的相似度变化

      蓝色曲线.经过G. bulloides含量修正后的FP-12E和IKM-Chen转换函数共同度;YD.新仙女木事件;B/A.Bølling-Allerød暖期

      Fig.  5.  Variation of communality, similarity and dissimilarity of 5 foraminiferal transfer functions in core A7

    • [1] Barker, S., Cacho, I., Benway, H., et al., 2005. Planktonic foraminiferal Mg/Ca as a proxy for past oceanic temperatures: a methodological overview and data compilation for the Last Glacial Maximum. Quaternary Science Reviews, 24: 821-834. doi: 10.1016/j.quascirev.2004.07.016.
      [2] Bé, A.W.H., 1977. An ecological, zoogeographic and taxonomic review of recent planktonic foraminifera. In: Ramsay, A.T.S., ed., Oceanic micropaleontology. Academic Press, London.
      [3] Bond, G., Broecker, W., Johnsen, S., et al., 1993. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature, 365: 143-147. doi: 10.1038/365143a0
      [4] Chen, J.X., Li, T.G., Nan, Q.Y., 2009. Variations of terrigenous material discharges in the South Okinawa Trough and its relation to the East Asian summer monsoon since the last millennium. Earth Science—Journal of China University of Geosciences, 34(5): 811-818 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.091
      [5] Chen, M., Huang, C., Pflaumann, U., et al., 2005. Estimating glacial western Pacific sea-surface temperature: methodological overview and data compilation of surface sediment planktic foraminifer faunas. Quaternary Science Review, 24: 1049-1062. doi: 10.1016/j.quascirev.2004.07.013
      [6] Chen, R.H., Meng, Y., Li, B.H., et al., 1999. Variations in the lysocline of carbonate in the southern Okinawa Trough during the last 20 000 years. Marine Geology and Quaternary Geology, 19 (1), 25-30 (in Chinese with English abstract). http://www.cqvip.com/QK/96122X/19991/3433941.html
      [7] CLIMAP Project Members, 1976. The surface of the ice-age Earth. Science, 191: 1131-1137. doi: 10.1126/science.191.4232.1131
      [8] Ge, H.M., Li, Q.Y., Cheng, X.R., et al., 2010. Late Quaternary high resolution monsoon records in planktonic stable isotopes from northern South China Sea. Earth Science—Journal of China University of Geosciences, 35(4): 515-525 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.067
      [9] Hanebuth, T., Stattegger, K., Grootes, P.M., 2000. Rapid flood of the Sunda shelf: a late-glacial sea-level record. Science, 288: 1033-1035. doi: 10.1126/science.288.5468.1033
      [10] Hastings, D., Kienast, M., Steinke, S., et al., 2001. A comparison of three independent paleotemperature estimates from a high resolution record of deglacial SST records in the tropical South China Sea. American Geophysical Union, Fall Meeting, 82(47), AbstractPP12B-10.
      [11] Huang, C.C., Chen, M.T., Lee, M.Y., et al., 2002. Planktic foraminifer faunal sea surface temperature records of the past two glacial terminations in the South China Sea near Wan-An shallow (IMAGES core MD972151). Western Pacific Earth Sciences, 2: 1-4.
      [12] Huang, C.Y., Wu, S.H., Zhao, M.X., et al., 1997. Surface ocean and monsoon climate variability in the South China Sea since the last glaciation. Marine Micropaleontology, 32: 71-94. doi: 10.1016/S0377-8398(97)00014-5
      [13] Hutson, W.H., Prell, W.L., 1980. A paleoecological transfer function, FI-2, for Indian Ocean planktonic foraminifera. Paleontology, 54: 381-399. http://www.onacademic.com/detail/journal_1000036037615910_806a.html
      [14] Ijiri, A., Wang, L., Oba, T., et al., 2005. Paleoenvironmental changes in the northern area of the East China Sea during the past 42 000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 219: 239-261. doi: 10.1016/j.palaeo.2004.12.028
      [15] Imbrie, J., Kipp, N.G., 1971. A new micropaleontological method for quantitative paleoclimatology: application to a Late Pleistocene Caribbean core. In: Turekian, K.K., ed., The Late Cenozoic glacial ages. Yale University Press, New Haven, 71-181.
      [16] Jian, Z., Wang, P., Saito, Y., et al., 2000. Holocene variability of kuroshio current in the Okinawa Trough, northwestern Pacific Ocean. Earth and Planetary Science Letters, 184: 305-319. doi: 10.1016/S0012-821X(00)00321-6
      [17] Kucera, M., Rosell-Melé, A., Schneider, R., et al., 2005. Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO). Quaternary Science Reviews, 24: 813-819. doi: 10.1016/j.quascirev.2004.07.017
      [18] Lea, D.W., Pak, D.K., Spero, H.J., 2000. Climate impact of Late Quaternary equatorial Pacific Sea surface temperature variations. Science, 289: 1719-1724. doi: 10.1126/science.289.5485.1719
      [19] Li, T., Xiang, R., Sun, R., et al., 2005. Benthic foraminifera and deep-water evolution of the middle and southern Okinawa Trough during the last 18 000 years. Science in China (Ser. D), 48(6): 805-814. doi: 10.1360/03yd0222
      [20] Liu, J.P., Millimam, J.D., Gao, S., et al., 2004. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea. Marine Geology, 209: 45-67. doi: 10.1016/j.margeo.2004.06.009
      [21] Morey, A.E., Mix, A.C., Pisias, N.G., 2005. Planktonic foraminiferal assemblages preserved in surface sediments correspond to multiple environment variables. Quaternary Science Reviews, 24: 925-950. doi: 10.1016/j.quascirev.2003.09.011
      [22] Nürnberg, D., Bijma, J., Hemleben, C., 1996. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. Geochimica et Cosmochimica Acta, 60: 803-814. doi: 10.1016/0016-7037(95)00446-7
      [23] Peeters, F.J.C., Brummer, G.J.A., Ganssen, G., 2002. The effect of upwelling on the distribution and stable isotope composition of Globigerina bulloides and Globigerinoides ruber (planktonic foraminifera) in modern surface waters of the NW Arabian Sea. Global Planetary Change, 34: 269-291. doi: 10.1016/S0921-8181(02)00120-0
      [24] Pflaumann, U., Duprat, J., Pujol, C., et al., 1996. SIMMAX: a modern analog technique to deduce Atlantic Sea surface temperatures from planktonic foraminifera in deep-sea sediments. Paleoceanography, 11(1): 15-35. doi: 10.1029/95PA01743
      [25] Pflaumann, U., Jian, Z., 1999. Modern distribution patterns of planktonic foraminifera in the South China Sea and western Pacific: a new transfer technique to estimate regional sea-surface temperatures. Marine Geology, 156: 41-83. doi: 10.1016/S0025-3227(98)00173-X
      [26] Prell, W.L., 1985. The stability of low-latitude sea-surface temperatures: evaluation of the CLIMAP reconstruction with emphasis on the positive SST anomalies. Government Printing Office, US, 1-2: 1-60.
      [27] Rosenthal, Y., Oppo, D.W., Linsley, B.K., 2003. The amplitude and phasing of climate change during the last deglaciation in the Sulu Sea, western equatorial Pacific. Geophysical Research Letters, 30: 1428. doi: 10.1029/2002GL016612
      [28] Steinke, S., Kienast, M., Pflaumann, U., et al., 2001. A high-resolution sea-surface temperature record from the tropical South China Sea (16 500-3 000 aBP). Quaternary Research, 55: 352-362. doi: 10.1006/qres.2001.2235
      [29] Steinke, S., Yu, P.S., Kucera, M., et al., 2008. No-analog planktonic foraminiferal faunas in the glacial southern South China Sea: implications for the magnitude of glacial cooling in the western Pacific warm pool. Marine Micropaleontology, 66: 71-90. doi: 10.1016/j.marmicro.2007.07.008
      [30] Stott, L., Poulsen, C., Lund, S., et al., 2002. Super ENSO and global climate oscillations at millennial time scales. Science, 297: 222-226. doi: 10.1126/science.1071627
      [31] Sun, Y.B., Gao, S., Li, J., 2003. Preliminary analysis of grain-size populations with environmentally sensitive terrigenous materialsin marginal sea setting. Chinese Science Bulletin, 48: 184-187. doi: 10.1360/03tb9038
      [32] Sun, Y.B., Oppo, D.W., Xiang, R., et al., 2005. Last deglaciation in the Okinawa Trough: subtropical Northwest Pacific link to northern hemisphere and tropical climate. Paleoceanography, 20: A4005. doi: 10.1029/2004PA001061
      [33] Thompson, P.R., 1976. Planktonic foraminiferal dissolution and the progress towards a Pleistocene equatorial Pacific transfer function. Journal of Foraminiferal Research, 6: 208-227. doi: 10.2113/gsjfr.6.3.208
      [34] Thompson, P.R., 1981. Planktonic foraminifera in the western North Pacific during the past 150 000 years: comparison of modern and fossil assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology, 35: 241-279. doi: 10.1016/0031-0182(81)90099-7
      [35] Waelbroeck, C., Labeyrie, L., Duplessy, J.C., et al., 1998. Improving past sea surface temperature estimates based on planktonic fossil faunas. Paleoceanography, 13(3): 272-283. doi: 10.1029/98PA00071
      [36] Wang, P., Clemens, S., Beaufort, L., et al., 2005. Evolution and variability of the Asian monsoon system: state of the art and outstanding issues. Quaternary Science Reviews, 24: 595-629. doi: 10.1016/j.quascirev.2004.10.002
      [37] Xiang, R., Chen, M., Li, Q., et al., 2009. Planktonic foraminiferal records of East Asia monsoon changes in the southern South China Sea during the last 40 000 years. Marine Micropaleontology, 73: 1-13. doi: 10.1016/j.marmicro.2009.06.004
      [38] Xiang, R., Chen, M.H., Zhang, L.L., et al., 2010. Composition and distribution of living planktonic foraminifera in autumn waters of the northern South China Sea. Earth Science―Journal of China University of Geosciences, 35(1): 1-10 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.001
      [39] Xiang, R., Li, T.G., Yan, J., et al., 2001. Planktonic foraminiferal distribution and modern carbonate dissolution in the southern Okinawa Trough. Earth Science―Journal of China University of Geosciences, 26 (Suppl. ): 69-74 (in Chinese with English abstract).
      [40] Xiang, R., Sun, Y., Li, T., et al., 2007. Paleoenvironmental change in the Middle Okinawa Trough since the last deglaciation: evidence from the sedimentation rate and planktonic foraminiferal record. Palaeogeography, Palaeoclimatology, Palaeoecology, 243: 378-393. doi: 10.1016/j.palaeo.2006.08.016
      [41] Xu, X., Oda, M., 1999. Surface-water evolution of the eastern East China Sea during the last 36 000 years. Marine Geology, 156: 285-304. doi: 10.1016/S0025-3227(98)00183-2
      [42] Yu, H., Liu, Z., Berńe, S., et al., 2009. Variations in temperature and salinity of the surface water above the middle Okinawa Trough during the past 37 kyr. Palaeogeography, Palaeoclimatology, Palaeoecology, 281: 154-164. doi: 10.1016/j.palaeo.2009.08.002
      [43] Zhao, M.X., Huang, C.Y., Wang, C.C., et al., 2006. A millennial-scale U37k' sea-surface temperature record from the South China Sea (8°N) over the last 150 kyr: monsoon and sea-level influence. Palaeogeography, Palaeoclimatology, Palaeoecology, 236(1-2): 39-55. doi: 10.1016/j.palaeo.2005.11.033
      [44] 陈金霞, 李铁刚, 南青云, 2009. 冲绳海槽千年来陆源物质输入历史与东亚季风变迁. 地球科学——中国地质大学学报, 34(5): 811-818. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200905015.htm
      [45] 陈荣华, 孟翊, 李保华, 等, 1999. 冲绳海槽南部两万年来碳酸盐溶跃面的变迁. 海洋地质与第四纪地质, 19(1): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ901.003.htm
      [46] 葛黄敏, 李前裕, 成鑫荣, 等, 2010. 南海北部晚第四纪高分辨率浮游氧同位素地层学及其古气候信息. 地球科学——中国地质大学学报, 35(4): 515-525. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201004004.htm
      [47] 孙有斌, 高抒, 李军, 2003. 边缘海陆源物质中环境敏感粒度组分的初步分析. 科学通报, 48(1): 83-86. doi: 10.3321/j.issn:0023-074X.2003.01.021
      [48] 向荣, 陈木宏, 张兰兰, 等, 2010. 南海北部秋季活体浮游有孔虫的组成与分布. 地球科学——中国地质大学学报, 35(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201001004.htm
      [49] 向荣, 李铁刚, 阎军, 等, 2001. 冲绳海槽南部的浮游有孔虫分布与现代碳酸盐溶解作用. 地球科学——中国地质大学学报, 26(增刊): 69-74.
    • 加载中
    图(5)
    计量
    • 文章访问数:  3113
    • HTML全文浏览量:  143
    • PDF下载量:  52
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-09-25
    • 刊出日期:  2011-07-01

    目录

      /

      返回文章
      返回