• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    土著微生物参与下河套平原地下水中砷的还原作用

    杨会 王焰新 谢先军 段萌语

    杨会, 王焰新, 谢先军, 段萌语, 2011. 土著微生物参与下河套平原地下水中砷的还原作用. 地球科学, 36(3): 594-598. doi: 10.3799/dqkx.2011.061
    引用本文: 杨会, 王焰新, 谢先军, 段萌语, 2011. 土著微生物参与下河套平原地下水中砷的还原作用. 地球科学, 36(3): 594-598. doi: 10.3799/dqkx.2011.061
    YANG Hui, WANG Yan-xin, XIE Xian-jun, DUAN Meng-yu, 2011. Reduction of Arsenic in Groundwater from Hetao Plain with the Involvement of Indigenous Microbes. Earth Science, 36(3): 594-598. doi: 10.3799/dqkx.2011.061
    Citation: YANG Hui, WANG Yan-xin, XIE Xian-jun, DUAN Meng-yu, 2011. Reduction of Arsenic in Groundwater from Hetao Plain with the Involvement of Indigenous Microbes. Earth Science, 36(3): 594-598. doi: 10.3799/dqkx.2011.061

    土著微生物参与下河套平原地下水中砷的还原作用

    doi: 10.3799/dqkx.2011.061
    基金项目: 

    国家杰出青年科学基金项目 40425001

    国家自然科学基金重点项目 40830748

    详细信息
      作者简介:

      杨会(1982-), 女, 硕士研究生, 研究方向为环境地球化学.E-mail: hy53022@163.com

    • 中图分类号: P593

    Reduction of Arsenic in Groundwater from Hetao Plain with the Involvement of Indigenous Microbes

    • 摘要: 为查明土著微生物活动对高砷地下水形成的影响,利用河套平原高砷地下水中分离出的土著微生物(YH002)进行了微宇宙实验研究.实验结果表明: 高砷地下水中加入的葡萄糖提供了微生物生长所需要的碳源,微生物大量繁殖,分泌的有机酸使溶液的pH值降低.在缺氧条件下,溶液中的OD值最高达到了0.189,pH值最低为6.22;在有氧条件下,OD值最高达到了0.286,pH值最低为6.04.溶液中As(III)的初始质量浓度为74 μg/L,占总砷质量浓度的11.2%,在加入微生物和葡萄糖后,在缺氧和有氧条件下,As(III)的质量浓度分别为278 μg/L和310 μg/L,占总砷质量浓度的42%和47%.微宇宙实验说明地下水中的土著微生物能将As(V)还原成As(III).

       

    • 图  1  采样点位置

      Fig.  1.  Site of sampling

      图  2  YH002与16S rRNA构建的进化树

      Fig.  2.  Phylogenetic relationships between 16S rRNA sequence of the YH002 strain and related sequences

      图  3  菌液OD值(600 nm)随土著微生物培养时间的变化

      ■表示不加微生物不加葡萄糖;●表示加葡萄糖;▲表示加微生物;▼表示加葡萄糖加微生物

      Fig.  3.  The change of OD value (600 nm) in solution with the time of indigenous microbial culture

      图  4  pH值随土著微生物培养时间的变化

      ■表示不加微生物不加葡萄糖;●表示加葡萄糖;▲表示加微生物;▼表示加葡萄糖加微生物

      Fig.  4.  The change of pH value in solution with the time of indigenous microbial culture

      图  5  As(III)含量随土著微生物培养时间的变化

      ■表示不加微生物不加葡萄糖;●表示加葡萄糖;▲表示加微生物;▼表示加葡萄糖加微生物

      Fig.  5.  The change of As (III) in solution with the time of indigenous microbial culture

    • [1] Croal, L.R., Gralnick, J.A., Malasarn, D., et al., 2004. The genetics of geochemistry. Annual Review of Genetics, 38: 175-202. doi: 10.1146/annurev.genet.38.072902.091138
      [2] Cullen, W.R., Reimer, K.J., 1989. Arsenic speciation in the environment. Chemical Reviews, 89(4): 713-764. doi: 10.1021/cr00094a002
      [3] Duan, M.Y., Xie, Z.M., Wang, Y.X., et al., 2009. Microcosm studies on iron and arsenic mobilization from aquifer sediments under different conditions of microbial activity and carbon source. Environmental Geology, 57: 997-1003. doi: 10.1007/s00254-008-1384-z
      [4] Gihring, T.M., Druschel, G.K., Mccleskey, R.B., et al., 2001. Rapid arsenite oxidation by thermus aquaticus and thermus thermophilus: field and laboratory investigations. Environmental Science and Technology, 35: 3857-3862. doi: 10.1021/es010816f
      [5] Herbel, M., Fendorf, S., 2006. Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands. Chemical Geology, 228(1-3): 16-32. doi: 10.1016/j.chemgeo.2005.11.016
      [6] Humayoun, S.B., Bano, N., Hollibaugh, J.T., 2003. Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Applied and Environmental Microbiology, 69: 1030-1042. doi: 10.1128/AEM.69.2.1030-1042.2003
      [7] Islam, F.S., Gault, A.G., Boothman, C., et al., 2004. Role of metal-reducing bacteria in arsenic release from Bengal deltasediments. Nature, 430: 68-71. doi: 10.1038/nature02638
      [8] Kasan, H.C., 1993. The role of waste activated sludge and bacteria in metal-ion removal from solution. Environmental Science and Technology, 23(1): 79-117.
      [9] Katsoyiannis, I., Zouboulis, A., Althoff, H., et al., 2002. As (III) removal from groundwaters using fixed-bed upflow bioreactors. Chemosphere, 47: 325-332. doi: 10.1016/S0045-6535(01)00306-X
      [10] Le, X.C., Yalcin, S., Ma, M., 2000. Speciation of submicrogram per liter levels of arsenic in water: on-site species separation integrated with sample collection. Environmental Science and Technology, 34: 2342-1347. doi: 10.1021/es991203u
      [11] Menna, P., Hungria, M., Barcellos, F.G., et al., 2006. Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Systematic and Applied Microbiology, 29(4): 315-332. doi: 10.1016/j.syapm.2005.12.002
      [12] Ng, J.C., Wang, J.P., Shraim, A., 2003. A global health problem caused by arsenic from natural sources. Chemosphere, 52: 1353-1359. doi: 10.1016/S0045-6535(03)00470-3
      [13] Oremland, R.S., Stolz, J.F., 2005. Arsenic, microbes and contaminated aquifers. Trends in Microbiology, 13(2): 45-49. doi: 10.1016/j.tim.2004.12.002
      [14] Stackebrandt, E., Goebel, B.M., 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal Systematic Bacteriology, 44(4): 846-849. http://mbe.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ijs&resid=44/4/846
    • 加载中
    图(5)
    计量
    • 文章访问数:  3460
    • HTML全文浏览量:  139
    • PDF下载量:  56
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-07-29
    • 刊出日期:  2011-05-01

    目录

      /

      返回文章
      返回