The Energy Dissipation Model of PHC Pile Group for Penetration Process in Saturated Soft Soil Foundation
-
摘要: 软土地基中群桩稳定性分析是岩土工程的难点之一.通过对饱和软土地基中群桩贯入全过程的力学分析, 结合群桩效应与工作性能, 根据功能平衡原理, 建立了贯入过程中附加应力(含超静孔隙水压力)引起的耗散能量与外力做功、弹性势能三者的平衡关系; 同时, 针对饱和软土地基中高预应力管桩(PHC)的排土特性, 结合现行桩基规范, 分别给出了超静孔隙水压力势能、挤土耗散能、重力做功、超静孔隙水压力做功、摩擦耗能、土体弹性势能等的定量表达, 构建了PHC群桩贯入过程的能量耗散模型; 在此基础上, 导出了局部能量安全系数与整体能量安全系数.将上述模型应用于某工程PHC群桩基础的稳定性分析中, 并与数值模拟结果对比, 验证了该模型的合理可靠性, 对饱和软基中PHC群桩稳定性状态的判别具有一定指导意义.Abstract: Stability analysis of pile group in soft soil foundation is one of the difficult issues challenging geotechnical engineering. According to Energy Balance Principle, the equilibrium relationship among dissipation energy caused by additional stress (including excess pore water pressure) in penetration process, external work and Elastic Potential Energy is established, based on mechanical analysis of the whole process of pile group penetration test in soft soil foundation, combined with pile group effect and working performance of pile group. Meanwhile, quantitative expressions of potential energy of excess pore water pressure, soil-compacting dissipated energy, work of gravity, work of excess pore water pressure, friction energy dissipation and elastic potential energy of soil are given in accordance with the soil-compacting characteristic of pipe pile prestressed high strength and current code of pile foundation design, and energy dissipation model of PHC pile group in penetration process is constructed. Furthermore, the safety factor of local energy and total energy is derived on the basis of above-mentioned work. The reliability of the energy model is verified by its application to the stability analysis of PHC pile group foundation in a project and the comparison with the numerical simulation results, which is of significance for guiding discrimination of the stability of PHC pile group in soft soil foundation.
-
表 1 能量耗散计算结果
Table 1. Computing result of energy dissipation model
参数 意义 计算值 Ew(J) 超静孔隙水压力势能 4.13×109 Er(J) 塑性区内挤土位移所做总功 1.90×105 WF(J) 外力所做总功 4.24×107 Ef(J) 摩擦力耗能 3.73×107 Kf 局部能量安全系数 1.8 KF 整体能量安全系数 1.8 K 能量安全系数 0.98 -
[1] Chen, D.W., 2005. The method of the finite element analysis on the behaviors of pile groups (Dissertation). Hefei University of Technology, Hefei (in Chinese with English abstract). [2] Hu, Z.X., 1997. Soil mechanics and environment geotechnics. Tongji University Press, Shanghai (in Chinese). [3] Li, G.X., 2004. Advanced soil mechanics. Tsinghua University Press, Beijing (in Chinese). [4] Tang, S.D., Wang, Y.X., Ye, Z.H., 2003. Excess pore water pressure caused by installing pile group in saturated soft soil. Journal of Tongji University, 31(11): 1290-1294 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/tjdxxb200311007 [5] Wang, W.T., Qiu, H.J., Zhan, H.Q., 2001. Study on prediction and prevention for soil displacement caused by the statically pressed piles. Chinese Journal of Geotechnical Engineering, 23(3): 378-379 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=5346548 [6] Wang, Y.Q., 2003. Horizontal soil compaction displacement of driven compaction pile. Journal of Harbin Institute of Technology, 35(4): 472-475 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgydxxb200304023 [7] Wang, Y.X., Sun, J., 2004. Influence of pile driving on properties of soils around pile and pore water pressure. Chinese Journal of Rock Mechanics and Engineering, 23(1): 153-158 (in Chinese with English abstract). http://www.oalib.com/paper/1482016 [8] Yang, H., Yang, M., 2006. Development of load transfer method for settlement calculation of single pile. Chinese Journal of Underground Space and Engineering, 2(1): 155-159 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BASE200601034.htm [9] Yao, J.L., Zhang, D.H., 2004. The interaction of pile-soil in water buoyancy. Building Technique Development, 31(12): 28-29 (in Chinese with English abstract). [10] Yao, X.Q., 2004. Method of additional stress calculation in settlement of pile foundations. Structural Engineers, 20(4): 64-67 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_structural-engineers_thesis/020129263913.html [11] Zai, J.M., Ling, H., Wang, X.D., 2002. Numerical analysis of nonlinear interaction of piled raft foundations. Journal of Nanjing University of Technology, 24(5): 1-6 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NHXB200205000.htm [12] Zhang, G.L., 2005. Study on character of pile-soil cooperative work in the composite pile foundation (Dissertation). Zhejiang University, Hangzhou (in Chinese with English abstract). [13] Zhu, X.R., He, Y.H., Xu, C.F., et al., 2005. Excess pore water pressure caused by single pile driving in saturated soft soil. Chinese Journal of Rock Mechanics and Engineering, 24(Suppl. 2): 5740-5744 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX2005S2081.htm [14] Zhuo, Y., Liu, Z.S., Wu, F., et al., 2009. Finite element analysis on pile soil in teracti on of pile under horizontal load. Chinese Journal of Underground Space and Engineering, 5(Suppl. 2): 1554-1561 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BASE2009S2030.htm [15] Zou, C.H., Wang, C.D., Dai, R.P., et al., 2009. A elastic theory to improve calculation of single pile. Urban Roads Bridges & Flood Control, 10: 117-121 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CSDQ200910054.htm [16] 陈登伟, 2005. 群桩工作性状的有限元分析方法(硕士论文). 合肥: 合肥工业大学. [17] 胡中雄, 1997. 土力学与环境土工学. 上海: 同济大学出版社. [18] 李广信, 2004. 高等土力学. 北京: 清华大学出版社. [19] 唐世栋, 王永兴, 叶真华, 2003. 饱和软土地基中群桩施工引起的超孔隙水压力. 同济大学学报, 31(11): 1290-1294. doi: 10.3321/j.issn:0253-374X.2003.11.007 [20] 王伟堂, 裘华君, 詹红琴, 2001. 压桩挤土位移的预估与防治的研究. 岩土工程学报, 23(3): 378-379. doi: 10.3321/j.issn:1000-4548.2001.03.028 [21] 王幼青, 2003. 挤土桩水平向挤土位移分析. 哈尔滨工业大学学报, 35(4): 472-475. doi: 10.3321/j.issn:0367-6234.2003.04.023 [22] 王育兴, 孙钧, 2004. 打桩施工对周围土性及孔隙水压力的影响. 岩石力学与工程学报, 23(1): 153-158. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200401010.htm [23] 杨桦, 杨敏, 2006. 荷载传递法研究单桩荷载-沉降关系进展综述. 地下空间与工程学报, 2(1): 155-159. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200601034.htm [24] 姚俊玲, 章东鸿, 2004. 考虑水浮力的桩土共同作用. 建筑技术开发, 31(12): 28-29. [25] 姚笑青, 2004. 桩基沉降中的附加应力计算方法分析. 结构工程师, 20(4): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC200404014.htm [26] 宰金珉, 凌华, 王旭东, 2002. 桩筏基础非线性共同作用数值分析. 南京工业大学学报, 24(5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-NHXB200205000.htm [27] 张国亮, 2005. 复合桩基桩土共同作用性状研究. 杭州: 浙江大学. [28] 朱向荣, 何耀辉, 徐崇峰, 等, 2005. 饱和软土单桩沉桩超孔隙水压力分析. 岩石力学与工程学报, 24(增刊2): 5740-5744. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2005S2081.htm [29] 卓杨, 刘兹胜, 吴锋, 等, 2009. 水平受荷桩桩—土作用的有限元分析. 地下空间与工程学报, 5(增刊2): 1554-1561. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2009S2030.htm [30] 邹春华, 王长丹, 代仁平, 等, 2009. 一种改进的单桩计算弹性理论法. 城市道桥与防洪, 10: 117-121. https://www.cnki.com.cn/Article/CJFDTOTAL-CSDQ200910054.htm