• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    纳米微粒多重分数维准晶结构模型: 一种新型的金属纳米材料

    陈瀛 宫斯宁 龙光芝 孙学良 陈敬中

    陈瀛, 宫斯宁, 龙光芝, 孙学良, 陈敬中, 2011. 纳米微粒多重分数维准晶结构模型: 一种新型的金属纳米材料. 地球科学, 36(3): 572-580. doi: 10.3799/dqkx.2011.058
    引用本文: 陈瀛, 宫斯宁, 龙光芝, 孙学良, 陈敬中, 2011. 纳米微粒多重分数维准晶结构模型: 一种新型的金属纳米材料. 地球科学, 36(3): 572-580. doi: 10.3799/dqkx.2011.058
    CHEN Ying, GONG Si-ning, LONG Guang-zhi, SUN Xue-liang, CHEN Jing-zhong, 2011. The Multifractal Quasicrystal Structural Model of Nano Particles: A New Type of Metal Nano Material. Earth Science, 36(3): 572-580. doi: 10.3799/dqkx.2011.058
    Citation: CHEN Ying, GONG Si-ning, LONG Guang-zhi, SUN Xue-liang, CHEN Jing-zhong, 2011. The Multifractal Quasicrystal Structural Model of Nano Particles: A New Type of Metal Nano Material. Earth Science, 36(3): 572-580. doi: 10.3799/dqkx.2011.058

    纳米微粒多重分数维准晶结构模型: 一种新型的金属纳米材料

    doi: 10.3799/dqkx.2011.058
    基金项目: 

    教育部纳米矿物材料及应用工程研究中心开放基金 330-10407402

    详细信息
      作者简介:

      陈瀛(1978-), 博士, 主要研究方向: 晶体化学, 纳米材料与结构.E-mail: chenying7801@yahoo.com.cn

      通讯作者:

      陈敬中, E-mail: jzhchen@cug.edu.cn

    • 中图分类号: O723;O753

    The Multifractal Quasicrystal Structural Model of Nano Particles: A New Type of Metal Nano Material

    • 摘要: 描述了准晶结构研究状况, 提出了具有5次对称性的准晶结构模型, 包括正二十面体与正十二面体共轭生成的准晶结构模型和Al-Cu-Li共轭生成的大块准晶结构模型; 讨论了二维准晶的基本特征、二维准晶胞选取, 提出了具有8、10、12次对称性的二维准晶结构模型; 探讨了纳米微粒多重分数维结构模型, 分别给出了多重分数维表征值.

       

    • 图  1  正二十面体与正十二面体共轭生成的纳米微粒多重分数维准晶结构模型

      Fig.  1.  Structure model of multifractional demension on nano-particles generated by Quasicrystal conjugate structural model of Icosahedra and Dodecahedra

      图  2  二十面体准晶的高分辨电子显微镜像与电子衍射花样(据Hiraga et al., 1988)

      Fig.  2.  High-resolution electron microscope images and electron diffraction of Icosohedron Quasicrystal

      图  3  Al-Cu-Li生成大块准晶的纳米微粒多重分数维准晶结构模型

      Fig.  3.  Blocky quasicrystal structure model of multifractional demension on nano-particles generated by Al-Cu-Li

      图  4  准晶平面格子及有关几何拼图

      a.具5(L105)次对称的准晶平面格子;b.具8次对称的准晶平面格子;c.具10次对称的准晶平面格子;d.具12次对称的准晶平面格子;e、f.其他有关几何拼图

      Fig.  4.  Quasicrystal plane lattice and its related geometrical jigsaw

      图  5  具有8次对称性准晶的纳米微粒多重分数维结构模型

      a.先作出8次对称性的准晶胞,再以1.414 2(2.414 2)为准周期进行放大(缩小)操作,进一步作出1/8独立区内的Penrose拼图;b.以8次对称轴作旋转操作,可以生成具有8次对称性纳米微粒多重分数维准晶结构模型

      Fig.  5.  Structure model of multifractional demension on nano-particles with 8-fold symmetry

      图  6  具有8次对称准晶的高分辨电子显微镜像及及电子衍射花样

      Fig.  6.  High-resolution electron microscope images and electron diffraction with 8-fold symmetry Quasicrystal

      图  7  具有10次对称性准晶的纳米微粒多重分数维结构模型及电子衍射花样

      a.先作出10次对称性的准晶胞,以2.618 0(1.618 0)准周期作放大(缩小)操作,进而作1/10独立区内的Penrose结构拼图;b.再以10次对称轴作旋转操作,生成具有10次对称性纳米微粒多重分数维准晶结构模型

      Fig.  7.  Structure model of multifractional demension on nano-particles with 10-fold symmetry and its electron diffraction

      图  8  具有12次对称性准晶的纳米微粒多重分数维结构模型及电子衍射花样

      a.先作出12次对称性的准晶胞,再以2.732 1(1.732 1)准周期作放大(缩小)操作,进而作1/12独立区内的Penrose拼图;b.以高次轴12次对称轴旋转操作,生成具有12次对称性多重分数维准晶结构模型

      Fig.  8.  Structure model of multifractional demension on nano-particles with 12-fold symmetry and its electron diffraction

    • [1] Bancel, P.A., Heiney, P.A., Stephens, P.W., et al., 1985. Structure of rapidly quenched Al-Mn. Physical Review Letters, 54(2): 2422-2425. doi: 10.1103/PhysRevLett.54.2422
      [2] Belin-Ferre, E., Dubois, J.M., 2005. Pseudo-gap and properties of Al-based complex and aperiodic compounds. The Science of Complex Alloy Phases, 2: 281-324. http://www.researchgate.net/publication/286136649_Pseudo-gap_and_properties_of_Al-_based_complex_and_aperiodic_compounds
      [3] Bendersky, L., 1985. Quasicrystal with one-Dimensional translational symmetry and a tenfold rotation axis. Physical Review Letters, 55: 1461-1463. doi: 10.1103/PhysRevLett.55.1461
      [4] Chen, H., Li, D.X., Kuo, K.H., 1988. New type of two-Dimensional quasicrystal with twelvefold rotational symmetry. Physical Review Letters, 60: 1645-1648. doi: 10.1103/PhysRevLett.60.1645
      [5] Chen, J. Z., 1993a. Structural model of quasicrystal with 10-fold symmetry. Earth Science—Journal of China University of Geosciences, 18(Suppl. ): 114-121 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX1993S1013.htm
      [6] Chen, J.Z., 1993b. Structural model of quasicrystal with 8-fold symmetry. Earth Science—Journal of China University of Geosciences, 18(Suppl. ): 105-113 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX1993S1012.htm
      [7] Chen, J.Z., 1993c. Structural model of quasicrysttal with 12-fold symmetry. Earth Science—Journal of China University of Geosciences, 18(Suppl. ): 122-128 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DQKX1993S1014&dbcode=CJFD&year=1993&dflag=pdfdown
      [8] Chen, J.Z., Lu, X.Y., Pan, Z.L., et al., 1993a. A study on conjugate structural model for blocky quasicrystal. Earth Science—Journal of China University of Geosciences, 18(Suppl. ): 91-96 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX1993S1010.htm
      [9] Chen, J.Z., Pan, Z.L., 1993. Quasicrystal conjugate structural model of icosahedra and dodecahedra. Earth Science—Journal of China University of Geosciences, 18(Suppl. ): 82-90 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DQKX1993S1009&dbcode=CJFD&year=1993&dflag=pdfdown
      [10] Chen, J.Z., Peng, J., Chen, Y., et al., 2002. The multifractal quasicrystal structural model and its feature of nano particles. Conference of International Quasicrystal Structure. Marseilles, France.
      [11] Chen, J.Z., Wan, A.W., Lu, X.Y., et al., 1993c. A study of quasicrystal structure. Journal of China University of Geosciences, 18(Suppl. ): 42-46 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX1993S1003.htm
      [12] Chen, J.Z., Wan, A.W., Lu, X.Y., et al., 1993b. Fractal characteristics of quasicrystal stuctures. Earth Science—Journal of China University of Geosciences, 18(Suppl. ): 63-69 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX1993S1006.htm
      [13] Dotera, T., Gemma, T., 2006. Dodecagonal quasicrystal in a polymeric alloy. Philosophical Magazine, 86(6-8): 1085-1091. doi: 10.1080/14786430500254875
      [14] He, L.X., Wu, Y.K., Kuo, K.H., 1988. Decagonal quasicrystals with different periodicities along the tenfold axis in rapidly solidified Al65Cu20M15(M=Mn, Fe, Co or Ni). Journal of Materials Science Letters, 7(12): 1284-1286. doi: 10.1007/BF00719959
      [15] Hiraga, K., Zhang, B.P., Hirabayashi, M., et al., 1988. Highly ordered icosahedral quasi-crystal of Al-Cu-Fe alloy studied by electrondiffraction and high-resolution electron microscopy. Japanese Journal of applied physics, 27(6): 951-953. doi: 10.1143/JJAP.27L951
      [16] Ishimasa, T., Nissen, H.U., Fukano, Y., 1985. New ordered state between crystalline and amorphous in Ni-Cr particles. Physical Review Letters, 55(5): 511-513. doi: 10.1103/PhysRevLett.55.511
      [17] Kameoka, S., Tanabe, T., Tsai, A.P., 2004. Al-Cu-Fe quasicrystals for steam reforming of methanol: a new form of copper catalysts. Catalysis Today. 93-95: 23-26. doi: 10.1016/j.cattod.2004.05.010
      [18] Levine, D., Steinhardt, P.J., 1984. Quasicrystals: a new class of ordered structures. Physical Review Letters, 53: 2477-2480. doi: 10.1103/PhysRevLett.53.2477
      [19] Mackay, A.L., 1982. Crystallography and the penrose pattern. Physical A, 114(1-3): 609-616. doi: 10.1016/0378-4371(82)90359-4
      [20] Meisterernst, G., Zhang, L., Dreier, P., et al., 2006. Understanding czochralski growth of decagonal Al-Co-Cu. Philosophical Magazine, 86(3-5): 323-328. doi: 10.1080/14786430500270426
      [21] Peng, Z.Z., 1988. Deduction of pentagonal quasicrystals and the model of fractional dimension structure. Science in China (Ser. B)., 5: 541-550 (in Chinese with English abstract).
      [22] Shechtman, D., Blech, I., Gratias, D., et al., 1984. Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters, 53: 1951-1953. doi: 10.1103/PhysRevLett.53.1951
      [23] Shi, N.C., Shen, B.M., 1991. The fractal structure for eightfold symmetry quasicrystal. Chinese Science Bulletin, 36(3): 210-210. http://www.cqvip.com/QK/86894X/199103/1005288878.html
      [24] Stephens, P.W., Goldman, A.I., 1991. The structure of quasi-crystals. Scientific American, 264: 44-48. doi: 10.1038/scientificamerican0491-44
      [25] Subramaniam, A., Ramakrishnan, K., 2003. Rational approximants to 5, 8 and 7-fold two-dimensional tilings. Zeitschrift Fur Kristallographie, 218(9): 590-596. doi: 10.1524/zkri.218.9.590.20678
      [26] Wang, N., Chen, H., Kuo, K.H., 1987. Two-Dimensional quasicrystal with eightfold rotational symmetry. Physical Review Letters, 59: 1010-1013. doi: 10.1103/PhysRevLett.59.1010
      [27] You, J.Q., Hu, T.B., 1988. Quasiperiodic patterns with eight-ten-and twelvefold symmetries. Philosophical Magazine Letters, 57(3): 195-199. doi: 10.1080/09500838808203771
      [28] Zhang, Z., Ye, H.Q., Kuo, K H., 1985. A new icosahedral phase with symmetry. Philosophical Magazine A, 52(6): L49-L52. doi: 10.1080/014186508242135
      [29] 陈敬中, 1993a. 具有10次对称性的准晶结构模型. 地球科学——中国地质大学学报, 18(增刊): 114-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX1993S1013.htm
      [30] 陈敬中, 1993b. 具有8次对称性的准晶结构模型. 地球科学——中国地质大学学报, 18(增刊): 105-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX1993S1012.htm
      [31] 陈敬中, 1993c. 具有12次对称性的准晶结构模型. 地球科学——中国地质大学学报, 18(增刊): 122-128. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX1993S1014.htm
      [32] 陈敬中, 路湘豫, 潘兆橹, 等, 1993a. 大块准晶的共轭结构模型. 地球科学——中国地质大学学报, 18(增刊): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX1993S1010.htm
      [33] 陈敬中, 潘兆橹, 1993. 正二十面体与正十二面体共轭生成的准晶结构模型. 地球科学——中国地质大学学报, 18(增刊): 82-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX1993S1009.htm
      [34] 陈敬中, 万安娃, 路湘豫, 等, 1993c. 准晶结构研究进展. 地球科学——中国地质大学学报, 18(增刊): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX1993S1003.htm
      [35] 陈敬中, 万安娃, 路湘豫, 等, 1993b. 准晶体结构的分数维特征. 地球科学——中国地质大学学报, 18(增刊): 63-69. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX1993S1006.htm
      [36] 彭志忠, 1988. 含五次对称的准晶格的推导及微粒分维数结构模型. 中国科学(B辑), 5: 541-550.
    • 加载中
    图(8)
    计量
    • 文章访问数:  3079
    • HTML全文浏览量:  165
    • PDF下载量:  28
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-10-18
    • 刊出日期:  2011-05-01

    目录

      /

      返回文章
      返回