• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    烃源岩非均质性对有机质生烃动力学参数影响及评价

    王民 卢双舫 薛海涛 吴朝东 王雪飞

    王民, 卢双舫, 薛海涛, 吴朝东, 王雪飞, 2011. 烃源岩非均质性对有机质生烃动力学参数影响及评价. 地球科学, 36(3): 530-540. doi: 10.3799/dqkx.2011.054
    引用本文: 王民, 卢双舫, 薛海涛, 吴朝东, 王雪飞, 2011. 烃源岩非均质性对有机质生烃动力学参数影响及评价. 地球科学, 36(3): 530-540. doi: 10.3799/dqkx.2011.054
    WANG Min, LU Shuang-fang, XUE Hai-tao, WU Chao-dong, WANG Xue-fei, 2011. The Influence and Appraisement of Source Rock Heterogeneity on Kinetic Parameters of Hydrocarbon Generation from Organic Matter. Earth Science, 36(3): 530-540. doi: 10.3799/dqkx.2011.054
    Citation: WANG Min, LU Shuang-fang, XUE Hai-tao, WU Chao-dong, WANG Xue-fei, 2011. The Influence and Appraisement of Source Rock Heterogeneity on Kinetic Parameters of Hydrocarbon Generation from Organic Matter. Earth Science, 36(3): 530-540. doi: 10.3799/dqkx.2011.054

    烃源岩非均质性对有机质生烃动力学参数影响及评价

    doi: 10.3799/dqkx.2011.054
    基金项目: 

    国家自然基金项目 40972101

    国家重点基础研究发展计划项目 2009CB219306

    "国家油气重大专项"项目 2008ZX05007-001

    "国家油气重大专项"项目 2008ZX05004-003

    "构造与油气资源"教育部重点实验室开放课题 TPR-2010-23

    详细信息
      作者简介:

      王民(1981-), 男, 博士, 主要从事油气地球化学和成藏研究.E-mail: quickking@163.com

    • 中图分类号: P618.130.2

    The Influence and Appraisement of Source Rock Heterogeneity on Kinetic Parameters of Hydrocarbon Generation from Organic Matter

    • 摘要: 烃源岩的非均质性、动力学模型中频率因子的不确定性、热模拟实验条件(开放/封闭程度、加水与否、升温速率)以及热模拟实验的再现性都将影响有机质成烃动力学模型参数, 进而影响油气资源潜力评价结果的可信度.对此, 从多个盆地不同类型有机质样品(18块)的开放体系(Rock-Eval)热模拟实验入手, 选取SFF模型和MFF模型来描述不同类型有机质样品成烃动力学特征, 对比地质外推结果的差异性.其中采用SFF模型低估了具有较低和较高活化能有机质的生烃潜力(反应分数), 而采用MFF模型可以避免这一问题, 同时频率因子随活化能的升高而升高, 能有效解决频率因子不确定性的问题.同时采用算术平均法和依据S2加权平均法对不同类型样品的动力学参数求取平均动力学参数, 并以3.3 ℃/Ma的升温速率进行外推, 对比分析了不同类型有机质外推结果的差异性.最后, 通过对两种模型依据S2加权平均法获得的动力学参数在松辽盆地黑鱼泡凹陷实际应用表明, 应用MFF模型计算得出的生烃门限深度为1 700 m, 与前人研究结论一致.表明采用MFF模型和S2加权平均法获得的动力学参数进行资源评价具有较高可信度.

       

    • 图  1  Rock-Eval热解样品(镇参1井)实验转化率和动力学模型计算转化率对比

      a.SFF模型;b.MFF模型;R.计算值和实测值相关系数

      Fig.  1.  Experiment TR vs. kinetic model calculated TR for Zhencan 1 well source rock

      图  2  Ⅰ型有机质SFF模型和MFF模型活化能参数分布

      横坐标表示活化能分布区间,分布区间为160~340 kJ/mol,步长为10 kJ/mol;纵坐标表示反应分数.图中第一列和第三列为SFF模型标定的活化能分布图,第二列及第四列为MFF模型标定的活化能分布图

      Fig.  2.  Activation energies distributions for type Ⅰ kerogen of different models

      图  3  Ⅱ型、Ⅲ型有机质SFF模型和MFF模型活化能参数分布

      坐标轴含义与图 3坐标轴含义相同;图中第一列和第二列为Ⅱ型有机质的活化能分布图,第三列及第四列为Ⅲ型有机质的活化能分布图

      Fig.  3.  Activation energies distributions for type Ⅱ and Ⅲ kerogen of different models

      图  4  两种模型地质外推结果(Ⅰ型有机质样品的动力学参数)

      地质升温速率3.3 K/Ma,X轴范围从50~200 ℃,间隔为30 ℃;实线表示SFF模型应用结果,空心圆点表示MFF模型应用结果.横坐标表示地质温度(℃),纵坐标表示有机质成烃转化率

      Fig.  4.  Extrapolation results of two models (type Ⅰ kerogen)

      图  5  两种模型地质外推结果(左图为Ⅱ型有机质,右图为Ⅲ型有机质,图例同图 4)

      Fig.  5.  Extrapolation results of two models

      图  6  不同有机质类型烃源岩样品两种模型动力学参数算术平均对比

      a.Ⅰ型有机质样品;b.Ⅱ型有机质样品;c.Ⅲ型有机质样品,实心三角则表示对应反应分数大于1%的频率因子

      Fig.  6.  Comparison of the distribution of averaged activation energies of two models for different type organic matters

      图  7  两种模型外推结果对比

      地质升温速率3.3 K/Ma;a.Ⅰ型有机质样品;b.Ⅱ型有机质样品;c.Ⅲ型有机质样品;s表示SFF模型计算结果;m表示MFF模型计算结果

      Fig.  7.  Comparison of extrapolation results of two models

      图  8  两种平均方法得到的活化能分布对比

      a.表示Ⅰ型有机质;b.表示Ⅱ型有机质;c.表示Ⅲ型有机质;s.SFF模型;m.MFF模型;校正前指采用算数平均法;校正后指采用S2加权平均法

      Fig.  8.  Comparison of the distribution of averaged activation energies of two models

      图  9  两种模型两种平均动力学参数地质外推转化率-温度关系

      地质升温速率3.3 K/Ma;a.表示Ⅰ型有机质;b.表示Ⅱ型有机质;c.表示Ⅲ型有机质;校正前指采用算数平均法获得的动力学参数外推结果、校正后指采用S2加权平均法获得的动力学参数外推结果

      Fig.  9.  TR vs. geological temperature by extrapolation of the averaged kinetic parameters with two models

      图  10  松辽盆地黑鱼泡凹陷生烃剖面(a.应用地化参数得出的剖面,据卢双舫等,2009修改;b.应用两种模型S2平均动力学参数计算得出的剖面)

      Fig.  10.  Hydrocarbon generation profile in the Heiyupao sag in Songliao basin

      表  1  样品地化参数

      Table  1.   Geochemical parameters in the studied samples

      样品 层位 岩性 Ro(%) TOC(%) Tmax(℃) HI(mg HC/g TOC) OI(mg CO2/g TOC) S2(mg/g) 类型 盆地
      松辽煤 营城组 煤样 0.5 73.39 427 217 3.00 159.28 松辽盆地
      鱼17 qn1 灰黑色泥岩 0.83 3.92 443 689 56.00 27.02
      金87 qn1 泥岩 0.88 2.34 444 604 43.00 8.99
      鱼20 qn1 泥岩 0.85 1.64 445 548 97.00 20.59
      金88 qn1 灰黑色泥岩 0.9 2.98 451 691 23.00 14.14
      任10 n1 灰黑色泥岩 0.46 4.17 427 1 048 25.72 37.42 I
      杜410 qn23 灰黑色泥岩 0.5 5.59 433 1 052 8.00 26.12
      盛1 qn1 灰黑色泥岩 0.41 3.77 440 1 139 9.00 11.15
      杜402 qn1 灰黑色泥岩 0.7 1.36 440 920 55.51 12.53
      和2 k1n1 泥岩 0.68 4.25 439 177 4.61 海拉尔盆地
      和3 k1d1 0.48 4.66 435 115 5.37
      阳27 Es4 泥岩 1.23 1.36 427 477 143.00 6.49 渤海湾盆地
      官107 Es4 灰色页岩 2.24 432 453 60.00 10.15
      钟参1-2 n.d. 暗色泥岩 1.87 434 238 196.00 4.45
      镇参1 Es4 深灰色泥岩 0.26 4.64 387 541 131.00 25.09
      大43 Es3 灰质油页岩 0.9 8.34 429 585 22.00 48.78
      汶ZK16 Es4 油页岩 0.41 3.24 407 567 127.00 18.36
      艾试1 泥岩 0.33 10.52 420 79 17.00 8.35 吐哈盆地
      下载: 导出CSV
    • [1] Allred, V.D., 1966. Kinetics of oil shale pyrolysis. Chemical Engineering Progress, (62): 55-60.
      [2] Behar, F., Lorant, F., Lewan, M., 2008. Role of NSO compounds during primary cracking of a Type II kerogen and a Type III lignite. Organic Geochemistry, (39): 1-22. doi: 10.1016/j.orggeochem.2007.10.007
      [3] Behar, F.S., Kressmann, J.L., Rudkiewicz, et al., 1992. Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking. Organic Geochemistry, (19): 173-189. doi: 10.1016/0146-6380(92)90035-V
      [4] Braun, R.L., Burnham, A.K., 1992. PMOD: a flexible model of oil and gas generation, cracking, and expulsion. Organic Geochemistry, 19(1-3): 161-172. doi:10. 1016/0146-6380(92)90034-U
      [5] Burnham, A.K., Braun, R.L., Samou, A.M., 1988. Further comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters. Organic Geochemistry, 13(4-6): 839-845. doi: 10.1016/0146-6380(88)90236-7
      [6] Burnham, A.K., Schmidt, J., Braun, R.L., 1995. A test of the parallel reaction model using kinetic measurements on hydrous pyrolysis residues. Organic Geochemistry, 23(10): 931-939. doi: 10.1016/0146-6380(95)00069-0
      [7] Dieckmann, V., 2005. Modelling petroleum formation from heterogeneous source rocks: the influence of frequency factors on activation energy distribution and geological prediction. Marine and Petroleum Geology, (22): 375-390. doi:10.1016/j.marpetgeo. 2004.11.002
      [8] Dieckmann, V., Keym, M., 2006. A new approach to bridge the effect of organofacies variations on kinetic modelling and geological extrapolations. Organic Geochemistry, (37): 728-739. doi: 10.1016/j.orggeochem.2005.12.008
      [9] Friedman, H.L., 1963. Kinetics of thermal degradation of char-forming plastics from thermogravimetry: application to a phenolic plastic. Journal of Polymer Science(Part C), 6: 183-195. doi: 10.1002/polc.5070060121
      [10] Huang, D.F., Li, J.C., Zhou, Z.H., et al., 1984. The evolution and hydrocarbon generating mechanism of terrestrial facies organic matter. Petroleum Industry Press, Beijing, 165-180 (in Chinese).
      [11] Jarvie, D.M., 1991. Factors affecting rock-eval derived kinetic parameters. Chemical Geology, (93): 79-99. doi: 10.1016/0009-2541(91)90065-Y
      [12] Jin, Q., Qian, J.L., Huang, X.H., 1986. Study on thermal degradation kinetics of source rock kerogen and quantitative estimation of hydrocarbon transformation. Acta Petrolei Sinica, 7(3): 11-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB198603001.htm
      [13] Keym, M., Dieckman, V., Horsfield, B., et al., 2006. Source rock heterogeneity of the Upper Jurassic Draupne Formation, North Viking Graben, and its relevance to petroleum generation studies. Organic Geochemistry, (37): 220-243. doi: 10.1016/j.orggeochem.2005.08.023
      [14] Klomp, U.C., Wright, P.A., 1990. A new method for the measurement of kinetic parameters of hydrocarbon generation from source rocks. Organic Geochemistry, 116(1-3): 49-60. doi: 10.1016/0146-6380(90)90025-U
      [15] Lu, S.F., 1996. Kinetics theory of hydrocarbon generation from organic matter and its application. Petroleum Industry Press, Beijing (in Chinese).
      [16] Lu, S.F., Li, J.N., Liu, S.J., et al., 2009. Oil generation threshold depth of Songliao basin: revision and its significanc. Petroleum Exploration and Development, 36(2): 166-173 (in Chinese with English abstract). doi: 10.1016/S1876-3804(09)60117-8
      [17] Lu, S.F., Wang, Z.W., Huang, D.F., et al., 1995. Coal macerals of hydrocarbon generation kinetics. Science in China (Ser. B), 25(1): 101-107 (in Chinese). http://www.researchgate.net/publication/292432354_Coal_macerals_of_hydrocarbon_generation_kinetics
      [18] Lu, S.F., Zhong, N.N., Xue, H.T., et al., 2007. Chemical kinetics study of hydrocarbon regeneration from organic matter in carbonate source rocks and its significance. Science in China (Ser. D), 50(4): 536-543. doi: 10.1007/s11430-007-2058-5
      [19] Pepper, A.S., Corvit, P.J., 1995. Simple kinetic models of petroleum formation: part I, oil and gas generation from kerogen. Marine and Petroleum Geology, 12(3): 291-319. doi:10. 1016/0264-8172(95)98381-E
      [20] Peters, K.E., Walters, C.C., Mankiewicz, P.J., 2006. Evaluation of kinetic uncertainty in numerical models of petroleum generation. American Association of Petroleum Geologists Bulletin, 90(3): 387-403. doi: 10.1306/10140505122
      [21] Pitt, G.J., 1962. The kinetics of evolution of volatile products from coal. Fuel, (41): 267- 274. http://www.researchgate.net/publication/264739462_The_Kinetics_of_the_Evolution_of_Volatile_Products_From_Coal
      [22] Quigley, T.M., Mackenzie, A.S., 1988. The temperatures of oil and gas formation in the sub-surface. Nature, 333(6173): 549-552. doi: 10.1038/333549a0
      [23] Schaefer, R.G., Schenk, H.J., Hardelauf, H., et al., 1990. Determination of gross kinetic parameters for petroleum formation from jurassic source rocks of different maturity levels by means of laboratory experiments. Organic Geochemistry, 16(1-3): 115-120. doi: 10.1016/0146-6380(90)90031-T
      [24] Schenk, H.J., Dieckmann, V., 2004. Prediction of petroleum formation: the influence of laboratory heating rates on kinetic parameters and geological extrapolations. Marine and Petroleum Geology, 21(1): 79-95. doi: 10.1016/j.marpetgeo.2003.11.004
      [25] Schenk, H.J., Horsfield, B., 1993. Kinetics of petroleum generation by programmed-temperature closed-versus open-system pyrolysis. Geochimica et Cosmochimica Acta, 57(3): 623-630. doi: 10.1016/0016-7037(93)90373-5
      [26] Tissot, B.P., Pelet, R., Ungerer, P., 1987. Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation. AAPG Bulletin, 71(12): 1445-1466. doi: 10.1306/703C80E7-1707-11D7-8645000102C1865D
      [27] Tissot, B.P., Welte, D.H., 1984. Petroleum formation and occurrence. Springer-verlag, Berlin.
      [28] Ungerer, P., 1990. State of the art of research in kinetic modelling of oil formation and expulsion. Organic Geochemistry, 16(1-3): 1-25. doi: 10.1016/0146-6380(90)90022-R
      [29] Ungerer, P., Pelet, R., 1987. Extrapolation of the kinetics of oil and gas formation from laboratory experiments to sedimentary basins. Nature, 327: 52-54. doi: 10.1038/327052a0
      [30] Wang, J.Q., Wu, L.Y., Qian, J.L., 1984. Kinetic study of hydrocarbon-forming pyrolysis of source rock by using rock evaluation apparatus. Journal of China University of Petroleum, 8(1): 1-9 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SYDX198401003.htm
      [31] Wang, M., Lu, S.F., Xue, H.T., et al., 2011. Study of hydrocarbon generation kinetic characteristics from different types of organic matter. Acta Geologica Sinica (English Edition), 85 (in press). http://d.wanfangdata.com.cn/Periodical/dzxb-e201103020
      [32] 黄第藩, 李晋超, 周翥红, 等, 1984. 陆相有机质演化和成烃机理. 北京: 石油工业出版社, 165-180.
      [33] 金强, 钱家麟, 黄醒汉, 1986. 生油岩干酪根热降解动力学研究及其在油气生成量计算中的应用. 石油学报, 7(3): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB198603001.htm
      [34] 卢双舫, 1996. 有机质成烃动力学理论及其应用. 北京: 石油工业出版社.
      [35] 卢双舫, 李娇娜, 刘绍军, 等, 2009. 松辽盆地生油门限重新厘定及其意义. 石油勘探与开发, 36(2): 166-173. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200902004.htm
      [36] 卢双舫, 王子文, 黄第藩, 等, 1995. 煤岩显微组分的成烃动力学. 中国科学(B辑), 25(1): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199501015.htm
      [37] 王剑秋, 乌立言, 钱家麟, 1984. 应用岩石评价仪进行生油岩热解生烃动力学研究. 华东石油学院学报, 8(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX198401003.htm
    • 加载中
    图(10) / 表(1)
    计量
    • 文章访问数:  3075
    • HTML全文浏览量:  141
    • PDF下载量:  61
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-11-12
    • 刊出日期:  2011-05-01

    目录

      /

      返回文章
      返回