Petrogenesis of the Early Cretaceous Xi'anli Hornblende-Gabbros from the Southern Taihang Mountains: Evidence from Zircon U-Pb Geochronology, Hf Isotope and Whole-Rock Geochemistry
-
摘要: 介绍了太行山南段西安里岩体角闪辉长岩的锆石U-Pb年代学、锆石Hf同位素以及岩石地球化学资料, 以便对该类岩石的成因给予制约.西安里岩体主要由一套含橄榄石角闪辉长岩-角闪闪长岩-闪长岩构成.角闪辉长岩中的锆石自形程度较高, 内部结构均匀, 呈条痕状吸收, Th/U值介于1.44~2.85之间, 表现出岩浆成因特征, 其206Pb/238U年龄介于135~127 Ma之间, 15个点的加权平均年龄为131±1 Ma, 即角闪辉长岩形成于早白垩世; 锆石的εHf(t)值介于-23.5~-19.2之间.角闪辉长岩中SiO2=50.27%~50.89%, Mg#=0.76~0.78, Na2O/K2O=2.18~2.37, 富含过渡族元素Sc (19.2~20.3)×10-6、Cr (939~1 050)×10-6、Co (54.6~58.2)×10-6、Ni (645~718)×10-6.同时角闪辉长岩相对富含大离子亲石元素(LILEs, 如Cs、Ba、Sr)和轻稀土元素(LREEs)、强烈亏损高场强元素(HFSEs, 如Nb、Ta、Zr、Hf)和重稀土元素(HREEs).结合角闪辉长岩中纯橄岩包体和橄榄石捕虏晶的矿物化学和地球化学研究, 认为西安里角闪辉长岩是拆沉的陆壳物质熔融的熔体与地幔橄榄岩反应的产物.Abstract: This paper reports zircon U-Pb geochronology, Hf isotope, and whole-rock geochemical data, aimed at constraining the petrogenesis of the hornblende (Hb)-gabbros from the Xi'anli intrusion in the southern Taihang Mountains (Mts.). The intrusion is composed mainly of olivine-bearing Hb-gabbro, Hb-diorite, and diorite. Zircons from the Hb-gabbros display euhedral shape and zonal homogeneous absorption on CL images, and have high Th/U ratio (1.44-2.85), suggesting a magmatic origin. Their 206Pb/238U ages range from 135 to 127 Ma, yielding a mean age of 131±1 Ma (MSWD=6.5, n=15), which suggests that the Xi'anli Hb-gabbros were formed in the Early Cretaceous. The εHf(t) values of selected zircons range from -23.5 to -19.2. The Xi'anli Hb-gabbros have SiO2 = 50.27%-50.89%, Mg# =0.76-0.78, and Na2O/K2O= 2.18-2.37, and are enriched in transitional elements such as Sc (19.2-20.3)×10-6, Cr (939-1 050)×10-6, Co (54.6-58.2)×10-6, and Ni (645-718)×10-6. Moreover, these gabbros are characterized by relative enrichment in large ion lithophile elements (LILEs, such as Cs, Ba, Sr) and light rare earth elements (LREEs), and intensive depletion in high field strength elements (HFSEs, such as Nb, Ta, Zr, Hf) and heavy rare earth elements (HREEs). Combined with the mineralogical and geochemical study of the dunite xenolith and the olivine xenocrysts hosted in the Hb-gabbros, we propose that the Xi'anli Hb-gabbros may have been produced by the reaction of the delaminated lower continental crust-derived melt and mantle peridotite.
-
Key words:
- Early Cretaceous /
- hornblende-gabbro /
- petrogenesis /
- geochemistry /
- geochronology /
- southern Taihang Mts
-
图 1 太行山南段和西安里岩体地质略图
a.华北克拉通构造分区简图;b.太行山南段地质略图;c.西安里岩体地质略图;华北克拉通的3个基本构造单元:西部陆块,中部带和东部陆块参考Zhao et al.(2001)
Fig. 1. Geologic sketch map of the southern Taihang Mts. and the Xi'anli intrusion
图 5 西安里角闪辉长岩的TAS图解
碱性和亚碱性系列之间的界限引自Irvine and Baragar(1971)
Fig. 5. Total alkali vs. SiO2 variation diagram for the Xi'anli Hb-gabbros
图 6 西安里角闪辉长岩的球粒陨石标准化稀土元素配分型式(a)和原始地幔标准化微量元素蛛网图(b)
球粒陨石标准化数据引自Boynton(1984);原始地幔标准化数据引自Sun and McDonough(1989)
Fig. 6. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spidergrams (b) for the Xi'anli Hb-gabbros
图 7 西安里角闪辉长岩的Y-Sr/Y变异图解(Defant and Kepezhinskas, 2001)
Fig. 7. Y vs. Sr/Y diagram for the Xi'anli Hb-gabbros
图 8 西安里角闪辉长岩中锆石Hf同位素特征(富集地幔EMⅠ区引自Yang et al., 2006;Chen et al., 2008)
Fig. 8. Zircon Hf isotopic features for the Hb-gabbro from the Xi'anli intrusion
表 1 西安里角闪辉长岩中锆石LA-ICP-MS U-Pb定年结果
Table 1. LA-ICP-MS zircon U-Pb dating data from the Xi'anli Hb-gabbro
点号 元素含量 Th/U 同位素比值 年龄(Ma) Th(10-6) U(10-6) 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 比值 1σ 比值 1σ 比值 1σ 比值 1σ 年龄 1σ 年龄 1σ 年龄 1σ 年龄 1σ XA2-11 1 111 525 2.12 0.049 9 0.001 5 0.144 8 0.004 5 0.021 1 0.000 2 0.006 6 0.000 1 190 55 137 4 134 1 133 2 XA2-12 423 263 1.61 0.051 5 0.002 1 0.147 9 0.006 1 0.021 0 0.000 2 0.006 6 0.000 1 265 74 140 5 134 1 133 2 XA2-13 1 446 547 2.64 0.048 9 0.001 3 0.136 5 0.003 6 0.020 3 0.000 2 0.006 6 0.000 1 140 47 130 3 129 1 132 2 XA2-14 979 497 1.97 0.049 0 0.001 6 0.134 8 0.004 5 0.020 0 0.000 2 0.006 4 0.000 1 149 62 128 4 127 1 128 2 XA2-15 590 298 1.98 0.052 0 0.002 1 0.148 4 0.006 0 0.020 8 0.000 2 0.006 7 0.000 2 283 71 141 5 133 2 135 3 XA2-16 1 694 708 2.39 0.048 5 0.001 4 0.132 2 0.003 7 0.019 9 0.000 2 0.006 5 0.000 1 122 51 126 3 127 1 130 2 XA2-17 578 296 1.95 0.051 7 0.001 9 0.149 3 0.005 7 0.020 9 0.000 2 0.006 6 0.000 1 270 72 141 5 133 1 134 2 XA2-18 920 640 1.44 0.049 7 0.001 4 0.140 3 0.003 8 0.020 4 0.000 2 0.006 7 0.000 1 181 48 133 3 130 1 136 2 XA2-19 1 569 604 2.60 0.049 9 0.001 5 0.143 4 0.004 1 0.020 8 0.000 2 0.006 7 0.000 1 191 52 136 4 133 1 135 2 XA2-110 771 463 1.67 0.050 7 0.001 7 0.145 2 0.004 9 0.020 7 0.000 2 0.006 5 0.000 1 226 64 138 4 132 1 131 2 XA2-111 1 302 581 2.24 0.048 8 0.001 6 0.137 8 0.004 3 0.020 4 0.000 2 0.006 5 0.000 1 139 58 131 4 130 1 131 2 XA2-112 1 752 615 2.85 0.049 1 0.001 4 0.137 9 0.003 7 0.020 4 0.000 2 0.006 4 0.000 1 154 47 131 3 130 1 130 2 XA2-113 1 684 638 2.64 0.053 9 0.001 4 0.158 2 0.004 1 0.021 2 0.000 2 0.006 8 0.000 1 365 46 149 4 135 1 137 2 XA2-114 1 536 554 2.77 0.049 2 0.001 4 0.138 5 0.003 8 0.020 4 0.000 2 0.006 4 0.000 1 156 50 132 3 130 1 129 2 XA2-115 1 644 692 2.38 0.050 2 0.001 3 0.142 9 0.003 6 0.020 6 0.000 2 0.006 5 0.000 1 206 45 136 3 131 1 130 2 表 2 西安里角闪辉长岩中锆石LA-ICP-MS Hf同位素分析结果
Table 2. LA-ICP-MS zircon Hf isotopic data from the Xi'anli Hb-gabbro
分析点号 同位素比值 Hf同位素成分 模式年龄(Ma) fLu/Hf 176Yb/177Hf 2σm 176Lu/177Hf 2σm 176Hf/177Hf 2σm εHf(0) εHf(t) 2σm TDM1 TDM2 XA2-1-01 0.102 588 0.004 106 0.003 755 0.000 149 0.282 081 0.000 027 -24.4 -21.9 1.0 1 778 3 579 -0.89 XA2-1-02 0.078 659 0.000 610 0.003 154 0.000 020 0.282 110 0.000 027 -23.4 -20.8 1.0 1 706 3 485 -0.90 XA2-1-03 0.098 703 0.000 289 0.003 659 0.000 018 0.282 063 0.000 019 -25.1 -22.5 0.7 1 799 3 634 -0.89 XA2-1-04 0.099 214 0.002 014 0.003 633 0.000 078 0.282 131 0.000 023 -22.7 -20.1 0.8 1 697 3 420 -0.89 XA2-1-05 0.096 487 0.003 006 0.003 560 0.000 112 0.282 096 0.000 028 -23.9 -21.4 1.0 1 746 3 531 -0.89 XA2-1-06 0.103 679 0.001 998 0.003 710 0.000 073 0.282 075 0.000 028 -24.6 -22.1 1.0 1 784 3 597 -0.89 XA2-1-07 0.155 761 0.002 831 0.005 558 0.000 101 0.282 054 0.000 026 -25.4 -23.0 0.9 1 916 3 675 -0.83 XA2-1-08 0.095 313 0.001 018 0.003 580 0.000 036 0.282 146 0.000 025 -22.1 -19.6 0.9 1 672 3 374 -0.89 XA2-1-09 0.112 446 0.000 442 0.003 970 0.000 016 0.282 098 0.000 023 -23.9 -21.3 0.8 1 764 3 528 -0.88 XA2-1-10 0.081 798 0.000 833 0.002 907 0.000 034 0.282 118 0.000 021 -23.1 -20.5 0.8 1 681 3 456 -0.91 XA2-1-11 0.110 841 0.000 298 0.004 015 0.000 021 0.282 038 0.000 021 -26.0 -23.5 0.8 1 856 3 716 -0.88 XA2-1-12 0.089 185 0.000 530 0.003 356 0.000 034 0.282 101 0.000 029 -23.7 -21.1 1.0 1 728 3 513 -0.90 XA2-1-13 0.113 416 0.000 126 0.004 095 0.000 012 0.282 090 0.000 029 -24.1 -21.6 1.0 1 781 3 553 -0.88 XA2-1-14 0.119 968 0.000 263 0.004 372 0.000 007 0.282 158 0.000 030 -21.7 -19.2 1.1 1 692 3 342 -0.87 XA2-1-15 0.098 330 0.000 732 0.003 593 0.000 031 0.282 116 0.000 027 -23.2 -20.6 1.0 1 717 3 468 -0.89 注:表中锆石Hf同位素组成的计算参数为:176Lu衰变常数λ=1.865×10-11( Söderlund et al., 2004 );球粒陨石和亏损地幔的176Lu/177Hf,176Hf/177Hf分别为0.033 21/0.282 772,0.038 42/0.283 25(Bizzarro et al., 2002 ;Griffin et al., 2000 );镁铁质下地壳的fLu/Hf=-0.34(Amelin et al., 2000 );计算εHf(t)时,取角闪辉长岩206Pb/238U年龄的加权平均值t=131 Ma.表 3 西安里角闪辉长岩主量元素(%)、微量元素(10-6)测试结果
Table 3. Major (%), trace-element (10-6) data of the Xi'anli Hb-gabbros
样品编号 SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI 总量 Mg# Na2O/K2O XA4-1 48.74 0.57 11.79 9.21 0.15 15.14 7.06 2.78 1.28 0.24 2.93 99.88 0.77 2.18 XA4-4 48.74 0.61 11.37 9.54 0.16 15.18 7.19 2.36 1.00 0.23 3.56 99.93 0.76 2.37 XA6-18 49.11 0.49 10.98 9.21 0.15 16.38 6.60 2.34 1.06 0.20 3.53 100.03 0.78 2.22 样品编号 Li Be Sc V Cr Co Ni Cu Zn Ga Rb Sr Y Zr XA4-1 10.19 0.78 20.2 173 976 54.6 645 52.5 98.5 15.4 25.9 659 15.1 60.1 XA4-4 9.37 0.70 20.3 169 939 54.9 635 44.4 99.1 14.5 18.2 667 15.8 54.0 XA6-18 9.08 0.69 19.2 145 1050 58.2 718 42.1 85.5 13.8 21.4 646 13.7 61.5 样品编号 Nb Mo Cs Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho XA4-1 3.39 0.34 0.80 575 15.9 36.2 4.82 21.1 4.24 1.33 3.63 0.50 2.77 0.52 XA4-4 3.14 0.57 0.73 433 14.8 33.1 4.50 20.2 4.18 1.32 3.69 0.51 2.89 0.53 XA6-18 3.00 0.51 0.81 504 15.3 33.5 4.35 18.7 3.70 1.13 3.11 0.43 2.43 0.46 样品编号 Er Tm Yb Lu Hf Ta Pb Th U Sr/Y (La/Yb)N δEu ΣREE XA4-1 1.48 0.22 1.35 0.20 1.78 0.17 6.01 1.26 0.34 43.55 7.92 0.99 94.29 XA4-4 1.51 0.21 1.29 0.20 1.65 0.16 5.20 1.15 0.31 42.29 7.70 0.99 88.83 XA6-18 1.35 0.19 1.18 0.18 1.78 0.16 5.40 1.25 0.35 47.12 8.79 0.98 86.05 -
[1] Amelin, Y., Lee, D.C., Halliday, A.N., 2000. Early-middle archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta, 64(24): 4205-4225. doi: 10.1016/S0016-7037(00)00493-2 [2] Anderson, D.L., 2005. Large igneous provinces, delamination, and fertile mantle. Elements, 1(5): 271-275. doi: 10.2113/gselements.1.5.271 [3] Andersen, T., 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X [4] Becker, H., Shirey, S.B., Garlson, R.W., 2001. Effects of melt percolation on the Re-Os systematics of peridotites from a Paleozoic convergent plate margin. Earth and Planetary Science Letters, 188(1-2): 107-121. doi: 10.1016/S0012-821X(01)00308-9 [5] Bizzarro, M., Simonetti, A., Stevenson, R.K., et al., 2002. Hf isotope evidence for a hidden mantle reservoir. Geology, 30(9): 771-774. doi:10.1130/0091-7613(2002)030<0771:HIEFAH>2.0.CO;2 [6] Boynton, W.V., 1984. Cosmochemistry of the rare earth elements: meteoric studies. In: Henderson, P., ed., Rare earth element geochemistry. Elsevier Science Publishing Company Inc., New York. [7] Chen, B., Jahn, B.M., Arakawa, Y., et al., 2004. Petrogenesis of the Mesozoic intrusive complexes from the southern Taihang orogen, North China craton: elemental and Sr-Nd-Pb isotopic constraints. Contributions to Mineralogy and Petrology, 148(4): 489-501. doi: 10.1007/s00410-004-0620-0 [8] Chen, B., Tian, W., Jahn, B.M., et al., 2008. Zircon SHRIMP U-Pb ages and insitu Hf isotopic analysis for the Mesozoic intrusions in South Taihang, North China craton: evidence for hybridization between mantle-derived magmas and crustal components. Lithos, 102(1-2): 118-137. doi: 10.1016/j.lithos.2007.06.012 [9] Chen, B., Tian, W., Zhai, M.G., et al., 2005. Zircon U-Pb geochronology and geochemistry of the Mesozoic magmatism in the Taihang Mountains and other places of the North China craton, with implications for petrogenesis and geodynamic setting. Acta Petrologica Sinica, 21(1): 13-24 (in Chinese with English abstract). [10] Chen, Z.C., Chen, B., Tian, W., 2007. Zircon U-Pb ages, Hf isotopic compositions and geological significance: a case study of Mesozoic batholiths and mafic enclaves in North Taihang. Acta Petrologica Sinica, 23(2): 295-306 (in Chinese with English abstract). http://www.oalib.com/paper/1492624 [11] Chu, N.C., Taylor, R.N., Chavagnac, V., et al., 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry, 17(12): 1567-1574. doi: 10.1039/b206707b [12] Defant, M.J., Kepezhinskas, P., 2001. Evidence suggests slab melting in arc magmas. Eos, Transactions American Geophysical Union, 82(6): 65, 68-69. doi: 10.1029/01EO00038 [13] Gao, S., Jin, Z.M., 1997. Delamination and its geodynamical significance for the crust mantle evolution. Geological Science and Technology Information, 16(1): 1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ701.000.htm [14] Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004. Recycling lower continental crust in the North China craton. Nature, 432: 892-897. doi: 10.1038/nature03162 [15] Gao, S., Zhang, J.F., Xu, W.L., et al., 2009. Delamination and destruction of the North China craton. Chinese Science Bulletin, 54(19): 3367-3378. doi: 10.1007/s11434-009-0395-9 [16] Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9 [17] Irvine, N.T., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. doi: 10.1139/e71-055 [18] Kay, R.W., 1978. Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, 4(1-2): 117-132. doi: 10.1016/0377-0273(78)90032-X [19] Kelemen, P.B., Hart, S.R., Bernstein, S., 1998. Silica enrichment in the continental upper mantle via melt/rock reaction. Earth and Planetary Science Letters, 164(1-2): 387-406. doi: 10.1016/S0012-821X(98)00233-7 [20] Kelemen, P.B., Shimizu, N., Salters, V.J.M., 1995. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature, 375: 747-753. doi: 10.1038/375747a0 [21] Li, C.N., 1992. Trace element petrology of igneous rocks. China University of Geosciences Press, Wuhan (in Chinese). [22] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004 [23] Maruyama, S., Send, T., 1986. Orogeny and relative plate motion: example of the Japanese islands. Tectonophysics, 127(3-4): 305-329. doi: 10.1016/0040-1951(86)90067-3 [24] Mashima, H., 2009. Genesis of high-magnesium andesites and associated basalts from Saga-Futagoyama, Northwest Kyushu, Southwest Japan. Journal of Volcanology and Geothermal Research, 187(1-2): 106-116. doi: 10.1016/j.jvolgeores.2009.07.021 [25] Morgan, Z., Liang, Y., 2003. An experimental and numerical study of the kinetics of harzburgite reactive dissolution with applications to dunite dike formation. Earth and Planetary Science Letters, 214(1-2): 59-74. doi: 10.1016/S0012-821X(03)00375-3 [26] Morgan, Z., Liang, Y., 2005. An experimental study of the kinetics of lherzolite reactive dissolution with applications to melt channel formation. Contributions to Mineralogy and Petrology, 150(4): 369-385. doi: 10.1007/s00410-005-0033-8 [27] Pei, F.P., Xu, W.L., Wang, Q.H., et al., 2004. Mesozoic basalt and mineral chemistry of the mantle-derived xenocrysts in Feixian, western Shandong, China: constraints on nature of Mesozoic lithospheric mantle. Geological Journal of China Universities, 10(1): 88-97 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200401007.htm [28] Peng, T.P., Wang, Y.J., Fan, W.M., et al., 2004. SHRIMP zircon U-Pb geochronology of the diorites for southern Taihang Mountains in the North China interior and its petrogenesis. Acta Petrologica Sinica, 20(5): 1253-1262 (in Chinese with English abstract). http://www.researchgate.net/publication/299250647_SHRIMP_zircon_U-Pb_geochronology_of_the_diorites_for_southern_Taihang_Mountains_in_the_North_China_Interior_and_its_petrogenesis [29] Rapp, R.P., Watson, E.B., 1995. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology, 36: 891-931. doi: 10.1093/petrology/36.4.891 [30] Rogers, G., Saunders, A.D., Terrell, D.J., et al., 1985. Geochemistry of Holocene volcanic rocks associated with ridge subduction in Baja California, Mexico. Nature, 315: 389-392. doi: 10.1038/315389a0 [31] Rudnick, R.L., 1995. Making continental crust. Nature, 378: 571-578. doi: 10.1038/378571a0 [32] Rudnick, R.L., Fountain, D.M., 1995. Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33(3): 267-309. doi: 10.1029/95RG01302 [33] Ryuichi, S., 1999. Geochemistry of high Mg andesites and the tectonic evolution of the Okinawa Trough-Ryukyu arc system. Chemical Geology, 157(1-2): 69-88. doi: 10.1016/S0009-2541(98)00199-5 [34] Shimoda, G., Tatsumi, Y., Nohda, S., et al., 1998. Setouchi high-Mg# andesites revisited: geochemical evidence for melting of subducting sediments. Earth and Planetary Science Letters, 160(3-4): 479-492. doi: 10.1016/S0012-821X(98)00105-8 [35] Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324. doi: 10.1016/S0012-821X(04)00012-3 [36] Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [37] Tatsumi, Y., 2001. Geochemical modeling of partial melting of subducting sediments and subsequent melt-mantle interaction: generation of high-Mg andesites in the Setouchi volcanic belt, Southwest Japan. Geology, 29(4): 323-326. doi:10.1130/0091-7613(2001)029<0323:GMOPMO>2.0.CO;2 [38] Wang, K.L., Chung, S.L., Chen, C.H., et al., 2002. Geochemical constraints on the petrogenesis of high-Mg basaltic andesites from the northern Taiwan volcanic zone. Chemical Geology, 182(2-4): 513-528. doi: 10.1016/S0009-2541(01)00338-2 [39] Wang, Y.J., Fan, W.M., Zhang, H.F., et al., 2006. Early Cretaceous gabbroic rocks from the Taihang Mountains: implications for a paleosubduction-related lithospheric mantle beneath the central North China craton. Lithos, 86(3-4): 281-302. doi: 10.1016/j.lithos.2005.07.001 [40] Wu, F.Y., Han, R.H., Yang, J.H., et al., 2007. Initial constraints on the timing of granitic magmatism in North Korea using U-Pb zircon geochronology. Chemical Geology, 238(3-4): 232-248. doi: 10.1016/j.chemgeo.2006.11.012 [41] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with Enlish abstract). http://www.researchgate.net/publication/279910636_Lu-Hf_isotopic_systematics_and_thier_applications_in_petrology [42] Wu, F.Y., Lin, J.Q., Wilde, S.A., et al., 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 233(1-2): 103-119. doi: 10.1016/j.epsl.2005.02.019 [43] Xu, P., Wu, F.Y., Xie, L.W., et al., 2004a. Hf isotopic compositions of the standard zircons for U-Pb dating. Chinese Science Bullentin, 49(15): 1642-1648. doi: 10.1007/BF03184136 [44] Xu, W.L., Wang, Q.H., Liu, X.C., et al., 2004b. Chronology and sources of Mesozoic intrusive complex in Xuzhou-Huainan region, Central China: constraints from SHRIMP zircon U-Pb dating. Acta Geologica Sinica, 78(1): 96-106. doi: 10.1111/j.1755-6724.2004.tb00679.x [45] Xu, Y.G., Ma, J.L., Huang, X.L., et al., 2004c. Early cretaceous gabbroic complex from Yinan, Shandong Province: petrogenesis and mantle domains beneath the North China craton. International Journal of Earth Sciences, 93(6): 1025-1041. doi: 10.1007/s00531-004-0430-7 [46] Xu, W.L., Chi, X.G., Yuan, C., et al., 1993. Mesozoic dioritic rocks and deep-seated inclusions in central North China platform. Geological Publishing Press, Beijing (in Chinese). [47] Xu, W.L., Hergt, J.M., Gao, S., et al., 2008. Interaction of adakitic melt-peridotite: implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China craton. Earth and Planetary Science Letters, 265(1-2): 123-137. doi: 10.1016/j.epsl.2007.09.041 [48] Xu, W.L., Yang, D.B., Gao, S., 2010a. Geochemistry of peridotite xenoliths in Early Cretaceous high-Mg# diorites from the central orogenic Block of the North China craton: the nature of Mesozoic lithospheric mantle and constraints on lithospheric thinning. Chemical Geology, 270(1-4): 257-273. doi: 10.1016/j.chemgeo.2009.12.006 [49] Xu, W.L., Wang, C.G., Yang, D.B., et al., 2010b. Dunite xenoliths and olivine xenocrysts in gabbro from Taihang Mountains: characteristics of Mesozoic lithospheric mantle in central China. Journal of Earth Sciences, 21(5): 692-710. doi: 10.1007/s12583-010-0121-1 [50] Xu, W.L., Yang, C.H., Yang, D.B., et al., 2006. Mesozoic high-Mg diorites in eastern North China craton: constraints on the mechanism of lithospheric thinning. Earth Science Frontiers, 13(2): 120-129 (in Chinese with Enlish abstract). http://www.researchgate.net/publication/291796536_Mesozoic_high-Mg_diorites_in_eastern_North_China_craton_Constraints_on_the_mechanism_of_lithospheric_thinning [51] Xu, W.L., Yang, D.B., Pei, F.P., et al., 2009. Petrogenesis of Fushan high-Mg# diorites from the southern Taihang Mrs. in the central North China craton: resulting from interaction of peridotite-melt derived from partial melting of delaminated lower continental crust. Acta Petrologica Sinica, 25(8): 1947-1961 (in Chinese with English abstract). [52] Xu, Y.G., 2001. Thermo-tectonic destruction of the archaean lithospheric keel beneath the Sino-Korean craton in China: evidence, timing and mechanism. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9-10): 747-757. doi: 10.1016/S1464-1895(01)00124-7 [53] Yang, C.H., Xu, W.L., Yang, D.B., et al., 2005. Petrogenesis of Mesozoic high-Mg diorites in western Shandong: evidence from chronology and petro-geochemistry. Journal of China University of Geosciences, 16(4): 297-308. http://d.wanfangdata.com.cn/Periodical_dqkx-e200504002.aspx [54] Yang, C.H., Xu, W.L., Yang, D.B., et al., 2008. Petrogenesis of Shangyu gabbro-diorites in western Shandong: geochronological and geochemical evidence. Science in China (Ser. D), 51(4): 481-492. doi: 10.1007/s11430-008-0029-0 [55] Yang, J.H., Wu, F.Y., Chung, S.L., et al., 2006. A hybrid origin for the Qianshan A-type granite, Northeast China: geochemical and Sr-Nd-Hf isotopic evidence. Lithos, 89(1-2): 89-106. doi: 10.1016/j.lithos.2005.10.002 [56] Yuan, H.L., Gao, S., Liu, X.M., et al., 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x [57] Zhang, H.F., Sun, M., Zhou, X.H., et al., 2002. Mesozoic lithosphere destruction beneath the North China craton: evidence from major, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contributions to Mineralogy and Petrology, 144(2): 241-254. doi: 10.1007/s00410-002-0395-0 [58] Zhao, G.C., Cawood, P., Lu, L.Z., 1999. Petrology and P-T history of the Wutai amphibolites: implications for tectonic evolution of the Wutai complex, China. Precambrian Research, 93(2-3): 181-199. doi: 10.1016/S0301-9268(98)00090-4 [59] Zhao, G.C., Cawood, P.A., Wilde, S.A., et al., 2000. Metamorphism of basement rocks in the central zone of the North China craton: implications for Paleoproterozoic tectonic evolution. Precambrian Research, 103(1-2): 55-88. doi: 10.1016/S0301-9268(00)00076-0 [60] Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 2001. Archean blocks and their boundaries in the North China craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2): 45-73. doi: 10.1016/S0301-9268(00)00154-6 [61] 陈斌, 田伟, 翟明国, 等, 2005. 太行山和华北其他地区中生代岩浆作用的锆石U-Pb年代学和地球化学特征及其岩浆成因和地球动力学意义. 岩石学报, 21(1): 13-24. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501002.htm [62] 陈智超, 陈斌, 田伟, 2007. 太行山北段中生代岩基及其包体锆石U-Pb年代学和Hf同位素性质及其地质意义. 岩石学报, 23(2): 295-306. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702011.htm [63] 高山, 金振民, 1997. 拆沉作用(delamination)及其壳-幔演化动力学意义. 地质科技情报, 16(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ701.000.htm [64] 李昌年, 1992. 火成岩微量元素岩石学. 武汉: 中国地质大学出版社. [65] 裴福萍, 许文良, 王清海, 等, 2004. 鲁西费县中生代玄武岩及幔源捕掳晶的矿物化学: 对岩石圈地幔性质的制约. 高校地质学报, 10(1): 88-97. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200401007.htm [66] 彭头平, 王岳军, 范蔚茗, 等, 2004. 南太行山闪长岩的SHRIMP锆石U-Pb年龄及岩石成因研究. 岩石学报, 20(5): 1253-1262. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200405019.htm [67] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm [68] 许文良, 迟效国, 袁朝, 等, 1993. 华北地台中部中生代闪长质岩石及深源岩石包体. 北京: 地质出版社. [69] 许文良, 杨承海, 杨德彬, 等, 2006. 华北克拉通东部中生代高Mg闪长岩——对岩石圈减薄机制的制约. 地学前缘, 13(2): 120-129. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200602014.htm [70] 许文良, 杨德彬, 裴福萍, 等, 2009. 太行山南段符山高镁闪长岩的成因——拆沉陆壳物质熔融的熔体与地幔橄榄岩反应的结果. 岩石学报, 25(8): 1947-1961. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200908021.htm