• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    旋回地层学理论基础、研究进展和展望

    吴怀春 张世红 冯庆来 方念乔 杨天水 李海燕

    吴怀春, 张世红, 冯庆来, 方念乔, 杨天水, 李海燕, 2011. 旋回地层学理论基础、研究进展和展望. 地球科学, 36(3): 409-428. doi: 10.3799/dqkx.2011.045
    引用本文: 吴怀春, 张世红, 冯庆来, 方念乔, 杨天水, 李海燕, 2011. 旋回地层学理论基础、研究进展和展望. 地球科学, 36(3): 409-428. doi: 10.3799/dqkx.2011.045
    WU Huai-chun, ZHANG Shi-hong, FENG Qing-lai, FANG Nian-qiao, YANG Tian-shui, LI Hai-yan, 2011. Theoretical Basis, Research Advancement and Prospects of Cyclostratigraphy. Earth Science, 36(3): 409-428. doi: 10.3799/dqkx.2011.045
    Citation: WU Huai-chun, ZHANG Shi-hong, FENG Qing-lai, FANG Nian-qiao, YANG Tian-shui, LI Hai-yan, 2011. Theoretical Basis, Research Advancement and Prospects of Cyclostratigraphy. Earth Science, 36(3): 409-428. doi: 10.3799/dqkx.2011.045

    旋回地层学理论基础、研究进展和展望

    doi: 10.3799/dqkx.2011.045
    基金项目: 

    国家自然科学基金项目 40802012

    国家自然科学基金项目 40839903

    国家重点基础研究发展计划"973"项目 2007CB411700

    中央高校基本科研业务费专项资金 2010ZD01

    详细信息
      作者简介:

      吴怀春(1977-), 男, 副教授, 主要从事旋回地层学、海洋地质学和古地磁学的教学和科研工作.E-mail: whcgeo@cugb.edu.cn

    • 中图分类号: P539

    Theoretical Basis, Research Advancement and Prospects of Cyclostratigraphy

    • 摘要: 在过去30余年中旋回地层学研究得到了极大发展, 对理解和解决地球科学领域众多科学问题做出了很大贡献.旋回地层学(Cyclostratigraphy)已被定义为"对地层记录的(准)周期性旋回变化进行识别、描述、对比和成因解释, 并将其应用于地质年代学以提高地层年代框架的精度和分辨率, 实现地层高精度划分与对比的一门地层学分支学科".能够反映古气候变化的岩性、岩相、地球物理和地球化学参数(即古气候替代指标)均可用于旋回地层学分析.通过岩性组合识别、频谱分析、连续窗口频谱分析、小波分析、滤波和调谐等方法可进行识别米兰科维奇旋回信号和建立高精度天文年代标尺.中国学者在北方黄土剖面、南海新近纪海相沉积、古生代海相沉积和部分中新生代陆相沉积中获得了良好的旋回地层学研究成果.对中国东北松辽盆地陆相白垩系和华南海相二叠系乐平统—中三叠统开展旋回地层学研究有望取得重要突破.

       

    • 图  1  南印度洋45万年以来沉积记录的旋回地层学分析(修改自Hays et al., 1976)

      a.夏季表层海水温度(Ts)、氧稳定同位素(δ18O)和放射虫C. davisiana丰度的频谱分析;b.δ18O和Ts曲线及其岁差、斜率滤波曲线与天文理论偏心率曲线变化对比

      Fig.  1.  Cyclostratigraphy analysis on the combined record over the past 450 ka from two deep-sea cores in South Indian Ocean

      图  2  地球轨道参数示意(Pisias and Imbrie, 1986)

      Fig.  2.  The sketch showing the Earth orbital parameters

      图  3  10 Ma以来偏心率(a)、斜率(b)、岁差(c)和北纬65°夏季日照量(d)变化曲线与主要周期

      Fig.  3.  Variations and main periods of eccentriciy (a), obliquity (b), precession (c) and insolation of June 21 at 65°N (d) over the past 10 Ma

      图  4  岁差和地轴斜率周期在地史时期的变化(Berger et al., 1989)

      Fig.  4.  Change of periodicities of obliquity and precession cycles with geologic time

      图  5  由地球轨道周期引起的地球表层系统的旋回过程(Strasser et al., 2006)

      Fig.  5.  Sketch illustrating the cycle processes of the earth surface system that is influenced by orbitally induced insolation changes

      图  6  采样密度、获取信号与真实信号的关系

      Fig.  6.  The relationship between sampling density, obtained signals and actual signal

    • [1] Abdul Aziz, H., Langereis, C.G., 2004. Astronomical tuning and duration of three new subchrons (C5r. 2r-1n, C5r. 2r-2n and C5r. 3r-1n) recorded in a Middle Miocene continental sequence from NE Spain. Geophysical Monographs, 145: 141-160.
      [2] Abels, H.A., Abdul Aziz, H., Krijgsman, W., et al., 2010. Long-period eccentricity control on sedimentary sequences in the continental Madrid basin (Middle Miocene, Spain). Earth and Planetary Science Letters, 289: 220-231. doi: 10.1016/j.epsl.2009.11.011
      [3] Adhémar, J.A., 1842. Révolutions des mers: déluges périodiques. Publication Privée, Paris.
      [4] Becker, L., Poreda, R.J., Basu, A.R., et al., 2004. Bedout: a possible end-Permian impact crater offshore of northwestern Australia. Science, 304(5676): 1469-1476. doi: 10.1126/science.1093925
      [5] Benton, M.J., 2005. When life nearly died: the greatest mass extinction of all time. Thames & Hudson, London.
      [6] Berger, A., 1988. Milankovitch theory and climate. Review of Geophysics, 26: 624-657. doi: 10.1029/RG026i004p00624
      [7] Berger, A., Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Review, 10: 297-317. doi: 10.1016/0277-3791(91)90033-Q
      [8] Berger, A., Loutre, M.F., Dehant, V., 1989. Astronomical frequencies for pre-Quaternary palaeoclimate studies. Terra Nova, 1: 474-479. doi: 10.1111/j.1365-3121.1989.tb00413.x
      [9] Berger, A., Loutre, M.F., Laskar, J., 1992. Stability of the astronomical frequencies over the Earth's history for paleoclimate studies. Science, 255: 560-566. doi: 10.1126/ science.255.5044.560
      [10] Bond, D.P.G., Wignall, P.B., 2010. Pyrite framboid study of marine Permian-Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. GSA Bulletin, 122(7-8): 1265-1279. doi: 10.1130/B30042.1
      [11] Bottjer, D.J., Clapham, M.E., Fraiser, M., et al., 2008. Understanding mechanisms for the end-Permian mass extinction and the protracted Early Triassic aftermath and recovery. GSA Today, 18: 4-10. doi: 10.1130/GSATG8A.1
      [12] Boulila, S., Hinnov, L.A., Huret, E., et al., 2008. Astronomical calibration of the Early Oxfordian (Vocontian and Paris basins, France): consequences of revising the Late Jurassic time scale. Earth and Planetary Science Letters, 276(1-2): 40-51. doi: 10.1016/j.epsl.2008.09.006
      [13] Bowring, S.A., Erwin, D.H., Jin, Y.G., et al., 1998. U/Pb zircon geochronology and tempo of the end-Permian mass extinction. Science, 280(1039): 1039-1045. doi: 10.1126/science.280.5366.1039
      [14] Bradley, W.H., 1929. The varves and climate of the Green River epoch. U.S. Geological Survey, Professional Paper, 158: 87-110. doi:10.1016/S0031- 0182(02)00716-2
      [15] Chen, D.Z., 2000. Cyclostratigraphy: a developing theory. Quaternary Sciences, 20(2): 186-195 (in Chinese with English abstract).
      [16] Chen, D.Z., Tucker, M.E., 2003. The Frasnian-Famennian mass extinction: insights from high-resolution sequence stratigraphy and cyclostratigraphy in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 193: 87-111. doi: 10.1016/S0031-0182(02)00716-2
      [17] Chen, J.Y., Feng, Q.L., Chen, J., et al., 2007. Cyclostratigraphy and stratigraphic correlation based on rock-magnetic parameters on the Permian-Triassic boundary in the Dongpan Section in Guangxi. Journal of Stratigraphy, 31(4): 309-316 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=25835711
      [18] Cheng, R.H., Wang, G.D., Wang, P.J., 2008. Sedimentary cycles of the Cretaceous Quantou-Nenjiang Formations and Milankovitch cycles of the South Hole of the SLCORE-I in the Songliao basin. Acta Geologica Sinica, 28(1): 55-64 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=26492898
      [19] Cheng, R.H., Wang, G.D., Wang, P.J., et al., 2009. Description of Cretaceous sedimentary sequence of the Yaojia Formation recovered by CCSD-SK-Is borehole in Songliao basin: lithostratigraphy, sedimentary facies and cyclic stratigraphy. Earth Science Frontiers, 16(2): 272-287 (in Chinese with English abstract). http://www.cqvip.com/QK/71135X/201107/30002561.html
      [20] Claoue-Long, J.C., Zhang, Z.C., Ma, G.G., et al., 1991. The age of the Permian-Triassic boundary. Earth and Planetary Science Letters, 105: 182-190. doi: 10.1016/0012-821X(91)90129-6
      [21] Courtillot, V., Jaupart, C., Manighetti, I., et al., 1999. On causal links between flood basalt and continental break up. Earth and Planetary Science Letters, 166: 177-195. doi: 10.1016/S0012-821X(98)00282-9
      [22] Croll, J., 1864. On the physical cause of the change of the climate during geological epochs. Philosophical Magazine, 28: 121-137.
      [23] Croll, J., 1875. Climate and time in their geological relations. Appleton, New York.
      [24] Cronin, M., Tauxe, L., Constable, C., et al., 2001. Noise in the quite zone. Earth and Planetary Science Letters, 190: 13-30. doi: 10.1016/S0012-821X(01)00354-5
      [25] Crowley, T.J., 2002. Cycles, cycles everywhere. Science, 295: 1473-1474. doi: 10.1126/science.1069617
      [26] De Geer, G., 1940. Geochronologia Suecica Principles. Atlas with Plates, 49-54. http://www.researchgate.net/publication/292331263_Geochronologia_Suecica_Principles
      [27] De Wit, M.J., Ghosh, J.G., De Villiers, S., et al., 2002. Multiple organic carbon isotope reversals across the Permo-Triassic boundary of terrestrial Gondwana sequences: clues to extinction patterns and delayed ecosystem recovery. The Journal of Geology, 110: 227-246. doi: 10.1086/338411
      [28] Ding, Z.L., Derbyshire, E., Yang, S.L., et al., 2002. Stacked 2.6 Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record. Paleoceanography, 17(3): 1033. doi: 10.1029/2001PA000725
      [29] Ding, Z.L., Yu, Z.W., Liu, T.S., 1994. Towards an orbital time scale for Chinese loess deposits. Quaternary Science Reviews, 13(1): 39-70. doi: 10.1016/0277-3791(94)90124-4
      [30] Droser, M.L., Bottjer, D.J., Sheehan, P.M., et al., 2000. Decoupling of taxonomic and ecologic severity of Phanerozoic mass extinctions. Geology, 28: 675-678. doi: 10.1130/0091-7613 (2000)28<675:DOTAES>2.0.CO;2
      [31] Emiliani, C., 1955. Pleistocene temperatures. Journal of Geology, 63: 538-578. doi: 10.1086/626295
      [32] Emiliani, C., 1966. Paleotemperature analysis of Caribbean cores P6304-6 and P6304-9 and a generalized temperature curve for the past 425, 000 years. Journal of Geology, 74: 109-126. doi: 10.1086/627150
      [33] Erwin, D.H., 1993. The great Paleozoic crisis: life and death in the Permian. Columbia University Press, New York.
      [34] Fischer, A.G., D'Argenio, B., Premoli Silva, I., et al., 2004. Cyclostratigraphic approach to Earth's history: an introduction. SEPM Special Publication, 81: 5-13. http://sp.sepmonline.org/content/sepspcyc/1/SEC1.body.pdf
      [35] Fischer, A.G., De Boer, P.L., Premoli Silva, I., 1988. Cyclostratigraphy. In: Beaudoin, B., Ginsburg, R.N., eds., Global sedimentary geology program: cretaceous resources, events, and rhythms. NATO ASI Series, Kluwer, 139-172.
      [36] Gale, A.S., Hardenbol, J., Hathway, B., et al., 2002. Global correlation of Cenomanian (Upper Cretaceous) sequences: evidence for Milankovitch control on sea level. Geology, 30: 291-294. doi: 10.1130/0091-7613(2002)030<0291:GCOCUC>2.0.CO;2
      [37] Gao, Y.F., Wang, P.J., Cheng, R.H., et al., 2009. Description of Cretaceous sedimentary sequence of the first member of the Qingshankou Formation recovered by CCSD-SK-Is borehole in Songliao basin: lithostratigraphy, sedimentary facies and cyclicstratigraphy. Earth Science Frontiers, 2009, 16(2): 314-323 (in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60081-0
      [38] Gilbert, G.K., 1895. Sedimentary measurement of Cretaceous time. Journal of Geology, 3: 121-127. doi: 10.1086/607150
      [39] Gong, Y.M., Du, Y.S., Tong, J.N., et al., 2008. Cyclostratigraphy: the third milestone of stratigraphy in understanding time. Earth Science—Journal of China University of Geosciences, 33(4): 443-457 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.059
      [40] Gong, Y.M., Li, B.H., Wang, C.Y., et al., 2001. Orbital cyclostratigraphy of the Devonian Frasnian-Famennian transition in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 168(3-4): 237-248. doi: 10.1016/S0031-0182(00)00257-1
      [41] Gong, Y.M., Xu, R., Tang, Z.D., et al., 2005. The Upper Devonian orbital cyclostratigraphy and numerical dating conodont zones from Guangxi, South China. Science in China (Ser. D), 48(1): 32-41. doi: 10.1360/03yd0025
      [42] Guo, G., Tong, J.N., Zhang, S.H., et al., 2008. Cyclostratigraphy of the Induan (Early Triassic) in West Pingdingshan Section, Chaohu, Anhui Province. Science in China (Ser. D), 51: 22-29. doi: 10.1007/s11430-007-0156-z
      [43] Hardie, L.A., 1996. Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m. y. Geology, 24: 279-284. doi: 10.1130/0091-7613(1996)024<0279:SVISCA>2.3.CO;2
      [44] Hays, J.D., Imbrie, J., Shackleton, N.J., 1976. Variations in the Earth's orbit: pacemakers of the ice ages. Science, 194: 1121-1132. doi: 10.1126/science.194.4270.1121
      [45] Heckel, P.H., Alekseev, A.S., Barrick, J.E., et al., 2005. Cyclothem (sequence-stratigraphic) correlation and biostratigraphy across the Moscovian-Kasimovian and Kasimovian-Gzhelian stage boundaries (Upper Pennsylvanian Series) in North America and Eurasia. Newsletter on Carboniferous Stratigraphy, 23: 36-44. http://istina.msu.ru/publications/article/5543250/
      [46] Hedberg, H.D., 1976. International stratigraphic guide—a guide to stratigraphic classification, terminology, and procedure. Wiley, New York.
      [47] Helsley, C.E., Steiner, M.B., 1969. Evidence for long intervals of normal polarity during the Cretaceous period. Earth and Planetary Science Letters, 5: 325-332. doi: 10.1016/S0012-821X(68)80060-3
      [48] Heslop, D., Langereis, C.G., Dekkers, M.J., 2000. A new astronomical time scale for the loess deposits of northern China. Earth and Planetary Science Letters, 184: 125-139. doi: 10.1016/S0012-821X(00)00324-1
      [49] Hilgen, F.J., Krijgsman, W., Raffi, I., et al., 2000. Integrated stratigraphy and astronomical calibration of the Serravallian/Tortonian boundary section at Monte Giblisciemi, Sicily. Marine Micropaleontology, 38: 181-211. doi: 10.1016/S0377-8398(00)00008-6
      [50] Hilgen, F.J., Schwarzacher, W., Strasser, A., 2004. Concepts and definitions in cyclostratigraphy (second report of the cyclostratigraphy working group). SEPM Special Publication, 81: 303-305.
      [51] Hilgen, F., Brinkhuis, H., Zachariasse, W.J., 2006. Unit stratotypes for global stages: the Neogene perspective. Earth-Science Reviews, 74: 113-125. doi: 10.1016/j.earscirev.2005.09.003
      [52] Hinnov, L.A., Ogg, J.G., 2007. Cyclostratigraphy and the astronomical time scale. Stratigraphy, 4: 239-251. http://www.researchgate.net/publication/248529016_Cyclostratigraphy_and_the_astronomical_time_scale_Stratigraphy
      [53] Hinnov, L.A., 2000. New perspectives on orbitally forced stratigraphy. Annual Review of Earth and Planetery Science, 28: 419-475. doi: 10.1146/annurev.earth.28.1.419
      [54] Hinnov, L.A., 2004. Earth's orbital parameters and cycle stratigraphy. In: Gradstein, F.M., Ogg, J.G., Smith, A.G., eds., A geologic time scale 2004. Cambridge University Press, Cambridge, 55-62.
      [55] Holbourn, A., Kuhnt, W., Schulz, M., et al., 2005. Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature, 438: 483-487. doi: 10.1038/nature04123
      [56] Holbourn, A., Kuhnt, W., Schulz, M., et al., 2007. Orbitally-paced climate evolution during the Middle Miocene "Monterey" carbon-isotope excursion. Earth and Planetary Science Letters, 261: 534-550. doi: 10.1016/j.epsl.2007.07.026
      [57] Hu, X.M., Luba, J., Wang, C.S., et al., 2005. Upper Cretaceous oceanic red beds (CORBs) in the Tethys: occurrences, lithofacies, age and environments. Cretaceous Research, 26: 3-20. doi: 10.1016/j.cretres.2004.11.011
      [58] Huang, C.J., Hesselbo, S.P., Hinnov, L.A., 2010. Astrochronology of the Late Jurassic Kimmeridge clay (Dorset, England) and implications for Earth system processes. Earth and Planetary Science Letters, 289: 242-255. doi: 10.1016/j.epsl.2009.11.013
      [59] Huber, B.T., Hodell, D.A., Hamilton, C.P., 1995. Middle-Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. GSA Bulletin, 107(10): 1164-1191. doi: 10.1130/0016-7606(1995)107<1164:MLCCOT>2.3.CO;2
      [60] Jenkyns, H.C., 1980. Cretaceous anoxic events: from continents to oceans. Journal of Geological Society of London, 137: 171-188. doi: 10.1144/gsjgs.137.2.0171
      [61] Jin, Y.G., Shen, S.Z., Henderson, C.M., et al., 2006b. The global stratotype section and point (GSSP) for the boundary between the Capitanian and Wuchiapingian stage (Permian). Episodes, 29: 253-262. doi: 10.18814/epiiugs/2006/v29i4/003
      [62] Jin, Y.G., Wang, Y., Wang, W., et al., 2000. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science, 289: 432-436. doi: 10.1126/science.289.5478.432
      [63] Jin, Y.G., Wang, Y., Henderson, C.M., et al., 2006a. The global boundary stratotype section and point (GSSP) for the base of Changhsingian Stage (Upper Permian). Episodes, 29: 175-182. doi: 10.18814/epiiugs/2006/v29i3/003
      [64] Jones, C.E., Jenkyns, H.C., 2001. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. American Journal of Science, 301: 112-149. doi: 10.2475/ajs.301.2.112
      [65] Kiehl, J.T., Shields, C.A., 2005. Climate simulation of the Latest Permian: implications for mass extinction. Geology, 33(9): 757-760. doi: 10.1130/G21654.1
      [66] Knoll, H., Bambach, R.K., Canfield, D.E., et al., 1996. Comparative Earth history and Late Permian mass extinction. Science, 26: 452-457. doi: 10.1126/science.273.5274.452
      [67] Korte, C., Kozur, H. W, Bruckschen, P, et al., 2003. Strontium isotope evolution of Late Permian and Triassic seawater. Geochimica et Cosmochimica Acta, 67: 47-62. doi: 10.1016/S0016-7037(02)01035-9
      [68] Korte, C., Kozur, H.W., 2010. Carbon-isotope stratigraphy across the Permian-Triassic boundary: a review. Journal of Asian Earth Sciences, 39: 215-235. doi: 10.1016/j.jseaes.2010.01.005
      [69] Krijgsman, W., Hilgen, F.J., Raffi, I., et al., 1999. Chronology, causes and progression of the Messinian salinity crisis. Nature, 400: 652-655. doi: 10.1038/23231
      [70] Krull, E.S., Retallack, G.J., 2000. δ13C depth profiles from paleosols across the Permian-Triassic boundary: evidence for methane release. GSA Bulletin, 112(9): 1459-1472. doi: 10.1130/0016-7606(2000)112<1459:CDPFPA>2.0.CO;2
      [71] Kuhnt, W., Luderer, F., Nederbragt, S., et al., 2005. Orbital scale record of the late Cenomanian-Turonian oceanic anoxic event (OAE2) in the Tarfaya basin (Morocco). International Journal of Earth Sciences (Geol Rundsch), 94: 147-159. doi: 10.1007/s00531-004-0440-5
      [72] Kuiper, K.F., Deino, A., Hilgen, F.J., et al., 2008. Synchronizing rock clocks of Earth history. Science, 320: 500-504. doi: 10.1126/science.1154339
      [73] Labandeira, C.C., Sepkoski, J.J., 1993. Insect diversity in the fossil record. Science, 261: 310-315. doi: 10.1126/science.11536548
      [74] Lanci. L., Muttoni, G., Erba, E., 2010. Astronomical tuning of the Cenomanian Scaglia Bianca Formation at Furlo, Italy. Earth and Planetary Science Letters, 292: 231-237. doi: 10.1016/j.epsl.2010.01.041
      [75] Langereis, C.G., Dekkers, M.J., de Lange, G.J., et al., 1997. Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes. Geophysical Journal International, 129: 75-94. doi: 10.1111/j.1365-246X.1997.tb00938.x
      [76] Larson, R.L., 1991. Latest pulse of the Earth: evidence for a mid-Cretaceous superplume. Geology, 19: 547-550. doi: 10.1130/0091-7613(1991)019<0547:LPOEEF>2.3.CO;2
      [77] Laskar, J., 2006. Astronomical limits in using orbital tuning methodology for the geologic time scale. In: international association of mathematical geology: meeting on quantitative geology from multiple sources, 3-8 September. Liège, Belgium.
      [78] Laskar, J., Joutel, F., Boudin, F., 1993. Orbital, precessional, and insolation quantities for the Earth from -20 Myr to +10 Myr. Astronomy & Astrophysics, 270: 522- 533.
      [79] Laskar, J., Robutel, P., Joutel, F., et al., 2004. A long term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics, 428: 261-285. doi: 10.1051/0004-6361:20041335
      [80] Lehrmann, D.J., Ramezan, J., Bowring, S.A., et al., 2006. Timing of recovery from the end-Permian extinction: geochronologic and biostratigraphic constraints from South China. Geology, 34: 1053-1056. doi: 10.1130/G22827A.1
      [81] Li, Q.Y., Lourens, L., Wang, P.X., 2007. New ages for Neogene marine biostratigraphic events. Journal of Stratigraphy, 31(3): 197-208 (in Chinese with English abstract). http://www.researchgate.net/publication/46696835_New_ages_for_Neogene_marine_biostratigraphic_events
      [82] Li, Q.Y., Wang, P.X., 2005. Recognizing the stratigraphic and paleoclimatic significance of eccentricity cycles. Earth Science—Journal of China University of Geosciences, 30(5): 519-528 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200505001.htm
      [83] Lirer, F., Iaccarino, S., 2005. Integrated stratigraphy (cyclostratigraphy and biochronology) of late Middle Miocene deposits in the Mediterranean area and comparison with the North and Equatorial Atlantic Oceans: synthesis of major results. Terra Nova, 17: 338-349. doi: 10.1111/j.1365-3121.2005.00619.x
      [84] Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20: PA1003. doi: 10.1029/2004PA001071
      [85] Lourens, L.J., Hilgen, F.J., 1997. Long-periodic variations in the Earth's obliquity and their relation to third-order eustatic cycles and Late Neogene glaciations. Quaternary International, 40: 43-52. doi: 10.1016/S1040-6182(96)00060-2
      [86] Lourens, L.J., Hilgen, F.J., Zachariasse, W.J., et al., 1996. Evaluation of the Plio-Pleistocene astronomical time scale. Paleoceanography, 11: 391- 413. doi: 10.1029/96PA01125
      [87] Lourens, L., Hilgen, F., Shacklefton, N.J., et al., 2004. The Neogene period. In: Gradstein, F., Ogg, J., Smith, A., eds., A geologic time scale 2004. Cambridge University Press, Cambridge, 409-440.
      [88] Lourens, L.J., Sluijs, A., Kroon, D., et al., 2005. Astronomical pacing of Late Paleocene to Early Eocene global warming events. Nature, 435: 1083-1087. doi: 10.1038/nature03814
      [89] Lu, H., Liu, X., Zhang, F., et al., 1999. Astronomical calibration of loess-paleosol deposits at Luochuan central Chinese loess plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 154: 237-246. doi: 10.1016/S0031-0182(99)00113-3
      [90] Lu, H.Y., Hu, T., Wang, X.Y., 2009. Cycles and forcing mechanism of wet-dry variations in North China during the past 11.0 million years revealed by wind-Blown silt deposits. Geological Journal of China Universities, 15(2): 149-158 (in Chinese with English abstract).
      [91] Miall, A.D., Miall, C.E., 2001. Sequence stratigrapy as a scientific enterprise: the evolution and persistence of conflicting paradigms. Earth-Science Reviews, 54: 321-348. doi: 10.1016/S0012-8252(00)00041-6
      [92] Milankovitch, M., 1941. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem. Royal Serbian Academy, Belgrade, 1-633. http://www.mendeley.com/research/kanon-der-erdbestrahlung-und-seine-andwendung-auf-das-eiszeitenproblem/
      [93] Min, K., Mundil, R., Renne, P., et al., 2000. A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1 Ga rhyolite. Geochimica et Cosmochimica Acta, 64: 73- 98. doi: 10.1016/S0016-7037(99)00204-5
      [94] Mundil, R., Ludwig, K.R., Metcalfe, I., et al., 2004. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science, 305: 1760-1763. doi: 10.1126/science.1101012
      [95] Mundil, R., Metcalfe, I., Ludwig, K.R., et al., 2001. Timing of the Permian-Triassic biotic crisis: implications from new zircon U/Pb age data (and their limitations). Earth and Planetary Science Letters, 187: 131-145. doi: 10.1016/S0012-821X(01)00274-6
      [96] Newton, R.J., Pevitt, E.L., Wignall, P.B., et al., 2004. Large shifts in the isotopic composition of seawater sulphate across the Permo-Triassic boundary in northern Italy. Earth and Planetary Science Letters, 218: 331-345. doi: 10.1016/S0012-821X(03)00676-9
      [97] Olsen, P.E., Kent, D.V., 1999. Long-period Milankovitch cycles from the Late Triassic and Early Jurassic of eastern North America and their implications for the calibration of the Early Mesozoic time-scale and the long-term behaviour of the planets. Philosophical Transactions Mathematical Physical and Engineering Science, 357: 1761-1786. doi: 10.1098/rsta.1999.0400
      [98] Payne, J.L., Lehrmann, D.J., Wei, J.Y., et al., 2004. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science, 305: 506-509. doi: 10.1126/science.1097023
      [99] Peng, X.F., Feng, Q.L., Li, Z.B., et al., 2008. High-resolution cyclostratigraphy of geochemical records from Permo-Triassic boundary section of Dongpan, southwestern Guangxi, South China. Science in China (Ser. D), 51(2): 187-193. doi: 10.1007/s11430-008-0001-z
      [100] Pisias, N.G., Imbrie, J., 1986. Orbital geometry, CO2, and Pleistocene climate. Oceanus, 29(4): 43-49. http://www.researchgate.net/publication/230891376_Orbital_Geometry_CO2_and_Pleistocene_climate
      [101] Prokoph, A., Villeneuve, M., Agterberg, F.P., 2001. Geochronology and calibration of global Milankovitch cyclicity at the Cenomanian-Turonian boundary. Geology, 29(6): 523-526. doi: 10.1130/0091-7613(2001)029<0523:GACOGM>2.0.CO;2
      [102] Raffi, I., Backman, J., Fornaciari, E., et al., 2006. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quaternary Science Reviews, 25: 3113-3137. doi: 10.1016/j.quascirev.2006.07.007
      [103] Rampino, M.R., Prokoph, A., Adler, A., 2000. Tempo of the end-Permian event: high-resolution cyclostratigraphy at the Permian-Triassic boundary. Geology, 28(7): 643-646. doi: 10.1130/0091-7613(2000)28<643:TOTEEH>2.0.CO;2
      [104] Renne, P.R., Zhang, Z., Richards, M.A., et al., 1995. Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism. Science, 269: 1413-1416. doi: 10.1126/science.269.5229.1413
      [105] Retallack, G.J., Krull, E.S., 2006. Carbon isotopic for terminal-Permian methane outbursts and their role in extinctions of animals, plants, coral reefs, and peat swamps. In: Greb, S.F., DiMichele, W.A., eds., wetlands through time. Geological Society of America Special Paper, 399: 249-268. doi: 10.1130/2006.2399(12)
      [106] Retallack, G.J., Veevers, J.J., Morante, R., 1996. Global coal gap between Permian-Triassic extinction and Middle Triassic recovery of peat-forming plants. GSA Bulletin, 108(2): 195-207. doi: 10.1130/0016-7606(1996)108<0195:GCGBPT>2.3.CO;2
      [107] Riall, J.A., 2004. Abrupt climate change: chaos and order at orbital and millennial scales. Global Planetary Change, 41: 95-109. doi: 10.1016/j.gloplacha.2003.10.004
      [108] Sageman, B.B., Meyers, S.R., Arthur, M.A., 2006. Orbital time scale and new C-isotope record for Cenomanian-Turonian boundary stratotype. Geology, 34(2): 125-128. doi: 10.1130/G22074.1
      [109] Sahney, S., Benton, M.J., 2008. Recovery from the most profound mass extinction of all time. Proceedings of the Royal Society: Biological Science, 275: 759-765. doi: 10.1098/rspb.2007.1370
      [110] Salvador, A., 1994. International Stratigraphic Guide—a guide to stratigraphic classification, terminology, and procedure (2nd edition). International Union Geological Sciences and Geological Society of America.
      [111] Saunders, A., Reichow, M., 2009. The Siberian traps and end-Permian mass extinction: a critical review. Chinese Science Bulletin, 54(1): 20-37. doi: 10.1007/s11434-008-0543-7
      [112] Schlanger, S.O., Jenkyns, H.C., 1976. Cretaceous oceanic anoxic events: cause and consequence. Geologie en Mijinbouw, 55: 179-184. http://www.researchgate.net/publication/27710997_Cretaceous_oceanic_anoxic_events_causes_and_consequences
      [113] Schwarzacher, W., 1947. Über die sedimentäre Rhytmik der Dachsteinkalkes von Lofer. Verh. Geol. Bundesanstalt, H10-12: 175-188.
      [114] Schwarzacher, W., 1975. Sedimentation models and quantitative stratigraphy. Elsevier, Amsterdam.
      [115] Schwarzacher, W., 2000. Repetitions and cycles in stratigraphy. Earth-Science Reviews, 50: 51-75. doi: 10.1016/S0012-8252(99)00070-7
      [116] Shackleton, N.J., Opdyke, N.D., 1973. Oxygen isotope and palaeomagnetic stratigraphy of Equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quaternary Research, 3: 39-55. doi: 10.1016/0033-5894(73)90052-5
      [117] Shen, S.Z., Henderson, C.M., Bowring, S.A., et al., 2010. High-resolution Lopingian (Late Permian) timescale of South China. Geological Journal, 45: 122-134. doi: 10.1002/gj.1232
      [118] Skeleton, P.W., Robert, A.S., Simon, P.K., 2003. The Cretaceous world. Cambridge University Press.
      [119] Strasser, A., Hilgen, F.J., Heckel, P.H., 2006. Cyclostratigraphy-concepts, definitions, and applications. Newsletter of Stratigraphy, 42(2): 75-114. doi: 10.1127/0078-0421/2006/0042-0075 0078-00421
      [120] Strasser, A., Hillgärtner, H., Hug, W., et al., 2000. Third-order depositional sequences reflecting Milankovitch cyclicity. Terra Nova, 12: 303-311. doi: 10.1046/j.1365-3121.2000.00315.x
      [121] Tarduno, J., Brinkman, D.B., Renne, P.R., et al., 1998. Evidence for extreme climatic warmth from Late Cretaceous Arctic vertebrates. Science, 282: 2241-2244. doi: 10.1126/science.282.5397.2241
      [122] Tian, J., Pak, D.K., Wang, P.X., et al., 2006. Late Pliocene monsoon linkage in the tropical South China Sea. Earth and Planetary Science Letters, 252: 72-81. doi: 10.1016/j.epsl.2006.09.028
      [123] Tian, J., Wang, P.X., Cheng, X.R., 2004. Pleistocene precession forcing of the upper ocean structure variations in the southern South China Sea. Progress in Natural Science, 14(11): 1004-1009. doi: 10.1080/10020070412331344701
      [124] Tian, J., Wang, P.X., Cheng, X.R., 2005a. Establishment of the Plio-Pleistocene astronomical timescale of ODP Site 1143, southern South China Sea. Earth Science—Journal of China University of Geosciences, 30(1): 31-39 (in Chinese with English abstract). http://www.researchgate.net/publication/288530465_Establishment_of_the_Plio-Pleistocene_astronomical_timescale_of_ODP_site_1143_Southern_South_China_Sea
      [125] Tian, J., Wang, P.X., Cheng, X.R., 2005b. Astronomically tuned time scale 12 Ma to 18.3 Ma, ODP Site 1148, northern South China Sea. Earth Science—Journal of China University of Geosciences, 30(5): 513-518 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200505000.htm
      [126] Tian, J., Wang, P.X., Cheng, X.R., et al., 2002. Astronomically tuned Plio-Pleistocene benthic δ18O record from South China Sea and Atlantic-Pacific comparison. Earth and Planetary Science Letters, 203: 1015-1029. doi: 10.1016/S0012-821X(02)00923-8
      [127] Tian, J., Wang, P.X., Cheng, X.R., et al., 2005c. Forcing mechanism of the Pleistocene East Asian monsoon variations in a phase perspective. Science in China (Ser. D), 48(10): 1708-1717. doi: 10.1360/01yd0467
      [128] Tian, J., Zhao, Q., Wang, P.X., et al., 2008. Astronomically modulated Neogene sediment records from the South China Sea. Paleoceanography, 23: PA3210. doi: 10.1029/2007PA001552
      [129] Tong, J.N., Wang, D.H., 2005. Triassic chronostratigraphy and biotic recovery. Advances in Earth Science, 20(12): 1321-1326 (in Chinese with English abstract).
      [130] Tong, J.N., Yin, H.F., 1999. A Study on the Griesbachian cyclostratigraphy of Meishan Section, Changxing, Zhejiang Province. Journal of Stratigraphy, 23: 130-135 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ902.006.htm
      [131] Tong, J.N., Yin, H.F., 2009. Advance in the study of Early Triassic life and environment. Acta Palaeontologica Sinica, 48(3): 497-508 (in Chinese with English abstract). http://d.wanfangdata.com.cn/conference/7241396
      [132] Torrence, C., Compo, G.P., 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79: 61-78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
      [133] Turco, E., Hilgen, F.J., Lourens, L.J., et al., 2001. Punctuated evolution of global climate cooling during the late Middle to Late Miocene: high-resolution planktonic foraminiferal and oxygen isotope records from the Mediterranean. Paleoceanography, 16: 405- 423. doi: 10.1029/2000PA000509
      [134] Twitchett, R.J., Krystyn, L., Baud, A., et al., 2004. Rapid marine recovery after the end-Permian mass-extinction event in the absence of marine anoxia. Geology, 32: 805-808. doi: 10.1130/G20585.1
      [135] Van Dam, J.A., Abdul Aziz, H., de los Angeles Alvarez Sierra, M., et al., 2006. Long-period astronomical forcing of mammal turnover. Nature, 443: 687-691. doi: 10.1038/nature05163
      [136] Van Vugt, N., Steenbrink, J., Langereis, C.G., et al., 1998. Magnetostratigraphy-based astronomical tuning of the Early Pliocene lacustrine sediments of Ptolemais (NW Greece) and bed-to-bed correlation to the marine record. Earth and Planetary Science Letters, 164: 535- 551. doi: 10.1016/S0012-821X(98)00236-2
      [137] Varadi, F., Runnegar, B., Ghil, M., 2003. Successive refinements in long-term integrations of planetary orbits. Astrophysical Journal, 592: 620-630. doi: 10.1086/375560
      [138] Wade, B.S., Pälike, H., 2004. Oligocene climate dynamics. Paleoceanography, 19: A4019. doi: 10.1029/2004PA001042
      [139] Wang, C.S., 2006. Coupling of the Earth surface system: inferring from the Cretaceous major geological events. Advances in Earth Science, 21: 838-842 (in Chinese with English abstract). http://www.cqvip.com/QK/94287X/200608/22539055.html
      [140] Wang, C.S., Feng, Z.Q., Wu, H.Y., et al., 2008. Preliminary achievement of the Chinese Cretaceous continental scientific drilling project-SK-I. Acta Geologica Sinica, 82(1): 9-19 (in Chinese with English abstract).
      [141] Wang, C.S., Hu, X.M., Sarti, M., et al., 2005. Upper Cretaceous oceanic red beds in southern Tibet: a major change from anoxic to oxic, deep-sea environments. Cretaceous Research, 26: 21-32. doi: 10.1016/j.cretres.2004.11.010
      [142] Wang, C.S., Huang, Y.J., Zhao, X.X., 2009. Unlocking a Cretaceous geologic and geophysical puzzle: scientific drilling of Songliao basin in Northeast China. The Leading Edge, 28: 340-344. doi: 10.1190/1.3104081
      [143] Wang, G.D., Cheng, R.H., Wang, P.J., et al., 2009. Description of Cretaceous sedimentary sequence of the Quantou Formation recovered by CCSD-SK-Is borehole in Songliao basin: lithostratigraphy, sedimentary facies and cyclic stratigraphy. Earth Science Frontiers, 16(2): 324-338 (in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60078-0
      [144] Wang, P.J., Gao, Y.F., Cheng, R.H., et al., 2009. Description of Cretaceous sedimentary sequence of the second and third member of the Qingshankou Formation recovered by CCSD-SK2-Is borehole in Songliao basin: lithostratigraphy, sedimentary facies and cyclic stratigraphy. Earth Science Frontiers, 16(2): 288-313 (in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60080-9
      [145] Wang, P.X., 2006. Astronomical "pendulum" for geological clock. Marine Geology & Quaternary Geology, 26(1): 1-7 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200601000.htm
      [146] Wang, X.D., Sugiyama, T., 2000. Diversity and extinction patterns of Permian coral faunas of China. Lethaia, 33: 285-294. doi: 10.1080/002411600750053853
      [147] Weedon, G., 2003. Time-series analysis and cyclostratigraphy. Cambridge University Press, Cambridge.
      [148] Westerhold, T., Röhl, U., Raffi, I., et al., 2008. Astronomical calibration of the Paleocene time. Palaeogeography, Palaeoclimatology, Palaeoecology, 257: 377-403. doi: 10.1016/j.palaeo.2007.09.016
      [149] Westphal, H., Hilgen, F., Munnecke, A., 2010. An assessment of the suitability of individual rhythmic carbonate successions for astrochronological application. Earth-Science Reviews, 99: 19-30. doi: 10.1016/j.earscirev.2010.02.001
      [150] Wignall, P.B., Sun, Y.D., Bond, D.P.G., et al., 2009. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science, 324: 1179-1182. doi: 10.1126/science.1171956
      [151] Wignall, P.B., Twitchett, R.J., 2002. Permian-Triassic sedimentology of Jameson Land, East Greenland: incised submarine channels in an anoxic basin. Journal of the Geological Society, 159(6): 691-703. doi: 10.1144/0016-764900-120
      [152] Wilson, D.S., 1993. Confirmation of the astronomical calibration of the magnetic polarity timescale from sea-floor spreading rates. Nature, 364: 788-790. doi: 10.1038/364788a0
      [153] Wilson, P.A., Norris, R.D., Cooper, M.J., 2002. Testing the mid-Cretaceous greenhouse hypothesis using "glassy" foraminiferal calcite from the core of the Turonian tropics on Demerara Rise. Geology, 30: 607-610. doi: 10.1130/0091-7613(2002)030<0607:TTCGHU>2.0.CO;2
      [154] Wu, H. C, Zhang, S.H., Jiang, G.Q., et al., 2009. The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao basin of Northeast China and its stratigraphic and paleoclimate implications. Earth and Planetary Science Letters, 278: 308-323. doi: 10.1016/j.epsl.2008.12.016
      [155] Wu, H.C., Zhang, S.H., Huang, Q.H., 2008. Establishment of floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation in the Songliao basin of Northeast China. Earth Science Frontiers, 15(4): 159-169 (in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60049-4
      [156] Wu, H.C., Zhang, S.H., Sui, S.W., et al., 2007. Recognition of Milankovitch cycles in the natural gamma-ray logging of Upper Cretaceous terrestrial strata in the Songliao basin. Acta Geologica Sinica, 81(6): 996-1001. doi: 10.1111/j.1755-6724.2007.tb01021.x
      [157] Xu, D.Y., 2005. Astro-geologic time scale and the advancements of cyclostratigraphy. Journal of Stratigraphy, 29(Suppl. ): 635-640 (in Chinese with English abstract). http://www.researchgate.net/publication/288676397_Astro-geologic_time_scale_and_the_advancements_of_cyclostratigraphy
      [158] Xu, D.Y., Han, Y.B., Li, G.H., et al., 2006. The rise of astrostratigraphy. Journal of Stratigraphy, 30(4): 323-326 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ200604003.htm
      [159] Xu, D.Y., Yao, Y.M., Han, Y.B., et al., 2008. Astrostratigraphic research on the Neogene Minghuazhen Formation in Dongying sag, Shandong Province. Journal of Palaeogeography, 10(6): 287-296 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX200803013.htm
      [160] Yang, W., Lehrmann, D.J., 2003. Milankovitch climatic signals in Lower Triassic (Olenekian) peritidal carbonate successions, Nanpanjiang basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 201: 283-306. doi: 10.1016/S0031-0182(03)00614-X
      [161] Yao, Y.M., Fu, G.B., Xu, D.Y., et al., 2003. Preliminary study on the high-resolution cyclostratigraphy of the Jurassic system in Turpan-Hami basin, xinjiang. Journal of Stratigraphy, 27(2): 122-128 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ200302005.htm
      [162] Yao, Y.M., Xu, D.Y., Li, B.L., et al., 2007. High resolution cyclostratigraphic study on the third member of Shahejie Formation of drill core niu38 in the Dongying depression, Shandong Province. Journal of Stratigraphy, 31(3): 229-239 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ200703003.htm
      [163] Yin, H.F., Feng, Q.L., Lai, X.L., et al., 2007. The protracted Permo-Triassic crisis and multi-episode extinction around the Permian-Triassic boundary. Global and Planetary Change, 55: 1-20. doi: 10.1016/j.gloplacha.2006.06.005
      [164] Yin, H.F., Zhang, K.X., Tong, J.N., et al., 2001. The global stratotype section and point (GSSP) of the Permian-Triassic boundary. Episodes, 24: 102-114. doi: 10.18814/epiiugs/2001/v24i2/004
      [165] Zachos, J.C., Shackleton, N.J., Revenaugh, J.S., et al., 2001. Climate response to orbital forcing across the Oligocene-Miocene boundary. Science, 292: 274-278. doi: 10.1126/science.1058288
      [166] Zhang, X.H., Zhao, Z.Y., 2002. Definition of Milankovitch cycles for Yangchang Formation of the Upper Triassic in Ordos basin. Oil & Gas Geology, 23(4): 372-375 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200204014.htm
      [167] 陈代钊, 2000. 旋回地层学——一个正在发展中的理论. 第四纪研究, 20(2): 186-195. doi: 10.3321/j.issn:1001-7410.2000.02.010
      [168] 陈建业, 冯庆来, 陈晶, 等, 2007. 广西东攀二叠系-三叠系界线剖面基于岩石磁参数的米兰科维奇旋回特征和地层对比. 地层学杂志, 31(4): 309-316. doi: 10.3969/j.issn.0253-4959.2007.04.001
      [169] 程日辉, 王国栋, 王璞珺, 2008. 松辽盆地白垩系泉三段-嫩二段沉积旋回与米兰科维奇周期. 地质学报, 28(1): 55-64. doi: 10.3321/j.issn:0001-5717.2008.01.007
      [170] 程日辉, 王国栋, 王璞珺, 等, 2009. 松科1井南孔白垩系姚家组沉积序列精细描述: 岩石地层、沉积相与旋回地层. 地学前缘, 16(2): 272-287. doi: 10.3321/j.issn:1005-2321.2009.02.021
      [171] 高有峰, 王璞珺, 程日辉, 等, 2009. 松科1井南孔白垩系青山口组一段沉积序列精细描述: 岩石地层、沉积相与旋回地层. 地学前缘, 16(2): 314-323. doi: 10.3321/j.issn:1005-2321.2009.02.023
      [172] 龚一鸣, 杜远生, 童金南, 等, 2008. 旋回地层学: 地层学解读时间的第三里程碑. 地球科学——中国地质大学学报, 33(4): 443-457. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200804003.htm
      [173] 龚一鸣, 徐冉, 汤中道, 等, 2004. 广西上泥盆统轨道旋回地层与牙形石带的数字定年. 中国科学(D辑), 34(7): 635-643. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200407004.htm
      [174] 郭刚, 童金南, 张世红, 等, 2007. 安徽巢湖早三叠世印度期旋回地层研究. 中国科学(D辑), 37(12): 1571-1578. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200712003.htm
      [175] 李前裕, Lourens, L., 汪品先, 2007. 新近纪海相生物地层事件年龄新编. 地层学杂志, 31(3): 197-208. doi: 10.3969/j.issn.0253-4959.2007.03.001
      [176] 李前裕, 汪品先, 2005. 认识偏心率周期的地层古气候意义. 地球科学——中国地质大学学报, 30(5): 519-528. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200505001.htm
      [177] 鹿化煜, 胡挺, 王先彦, 2009.1 100万年以来中国北方风尘堆积与古气候变化的周期及驱动因素分析. 高校地质学报, 15(2): 149-158. doi: 10.3969/j.issn.1006-7493.2009.02.002
      [178] 彭兴芳, 冯庆来, 李周波, 等, 2007. 广西东攀二叠系-三叠系界线剖面地球化学旋回研究. 中国科学(D辑), 37(12): 1565-1570. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200712002.htm
      [179] 田军, 汪品先, 成鑫荣, 2004. 更新世南海南部上层海水结构变化的岁差驱动. 自然科学进展, 14(6): 683-688. doi: 10.3321/j.issn:1002-008X.2004.06.014
      [180] 田军, 汪品先, 成鑫荣, 等, 2005a. 南海ODP1143站上新世至更新世天文年代标尺的建立. 地球科学——中国地质大学学报, 30(1): 31-39. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200501004.htm
      [181] 田军, 汪品先, 成鑫荣, 等, 2005b. 南海ODP1148站中中新世(12~18.3 Ma)天文调谐的年代标尺. 地球科学——中国地质大学学报, 30(5): 513-518. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200505000.htm
      [182] 田军, 汪品先, 成鑫荣, 等, 2005c. 从相位差探讨更新世东亚季风的驱动机制, 中国科学(D辑), 35(2): 158-166. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200502006.htm
      [183] 童金南, 王德珲, 2005. 三叠纪年代地层与生物复苏. 地球科学进展, 20(12): 1321-1326. doi: 10.3321/j.issn:1001-8166.2005.12.007
      [184] 童金南, 殷鸿福, 1999. 浙江长兴煤山剖面Griesbachian期旋回地层研究. 地层学杂志, 23: 130-135. doi: 10.3969/j.issn.0253-4959.1999.02.007
      [185] 童金南, 殷鸿福, 2009. 早三叠世生物与环境研究进展. 古生物学报, 48(3): 497-508. doi: 10.3969/j.issn.0001-6616.2009.03.020
      [186] 汪品先, 2006. 地质计时的天文"钟摆". 海洋地质与第四纪地质, 26(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200601000.htm
      [187] 王成善, 2006. 白垩纪地球表层系统重大地质事件与温室气候变化研究——从重大地质事件探寻地球表层系统耦合. 地球科学进展, 21: 838-842. doi: 10.3321/j.issn:1001-8166.2006.08.008
      [188] 王成善, 冯志强, 吴河勇, 等, 2008. 中国白垩纪大陆科学钻探工程: 松科一井科学钻探工程的实施与初步进展. 地质学报, 82(1): 9-19. doi: 10.3321/j.issn:0001-5717.2008.01.002
      [189] 王国栋, 程日辉, 王璞珺, 等, 2009. 松科1井南孔白垩系泉头组沉积序列精细描述: 岩石地层、沉积相与旋回地层. 地学前缘, 16(2): 324-338. doi: 10.3321/j.issn:1005-2321.2009.02.024
      [190] 王璞珺, 高有峰, 程日辉, 等, 2009. 松科1井南孔白垩系青山口组二、三段沉积序列精细描述: 岩石地层、沉积相与旋回地层. 地学前缘, 16(2): 288-313. doi: 10.3321/j.issn:1005-2321.2009.02.022
      [191] 吴怀春, 张世红, 黄清华, 2008. 中国东北松辽盆地晚白垩世青山口组浮动天文年代标尺的建立. 地学前缘, 15(4): 159-169. doi: 10.3321/j.issn:1005-2321.2008.04.018
      [192] 徐道一, 2005. 天文地质年代表与旋回地层学研究进展. 地层学杂志, 29(增刊): 635-640. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ2005S1032.htm
      [193] 徐道一, 姚益民, 韩延本, 等, 2008. 山东东营凹陷新近系明化镇组天文地层研究. 古地理学报, 10(6): 287-296. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200803013.htm
      [194] 徐道一, 韩延本, 李国辉, 等, 2006. 天文地层学的兴起. 地层学杂志, 30(4): 323-326. doi: 10.3969/j.issn.0253-4959.2006.04.004
      [195] 姚益民, 付国斌, 徐道一, 等, 2003. 新疆吐哈盆地侏罗系旋回地层的初步研究. 地层学杂志, 27(2): 122-128. doi: 10.3969/j.issn.0253-4959.2003.02.006
      [196] 姚益民, 徐道一, 李保利, 等, 2007. 东营凹陷牛38井沙三段高分辨率旋回地层研究. 地层学杂志, 31(3): 229-239. doi: 10.3969/j.issn.0253-4959.2007.03.004
      [197] 张小会, 赵重远, 2002. 鄂尔多斯盆地上三叠统延长组米兰科维奇旋回的确定. 石油与天然气地质, 23(4): 372-375. doi: 10.3321/j.issn:0253-9985.2002.04.015
    • 加载中
    图(6)
    计量
    • 文章访问数:  3413
    • HTML全文浏览量:  220
    • PDF下载量:  96
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-11-01
    • 刊出日期:  2011-05-01

    目录

      /

      返回文章
      返回