Spatial Vector Data Compression Method Based on Integer Wavelet Transform
-
摘要: 针对空间曲线矢量数据相邻坐标点间坐标值大小差别不大的特点,提出一种新的矢量数据压缩方法:首先将空间坐标点间的差值转换为整型的偏移量,使用偏移量表示矢量数据的坐标点;然后利用整数小波变换(IWT)处理偏移量序列,最后对变换后的小波系数进行无损熵编码.使用此方法对中国数字地理地图数据的SHP文件进行压缩,实验结果显示, 压缩比超过11,高于其他类似方法,表明本压缩方法能够实现较高压缩比的空间矢量数据无损压缩.Abstract: The curve vector data are characterized by small differences between coordinate values of adjacent points. So in this paper, differences between the coordinate values are converted to the integer offset and then the offset is used as the substitute for coordinates of vector data. The integer offset sequence is processed by integer wavelet transform and then lossless entropy coding is used to compress the wavelet coefficients. Compressing the China's digital geographic map data of SHP files by the presented method generates a compression ratio higher than 11. Experimental results show that, for the vector data lossless compression, the presented compression method can achieve a higher compression ratio than other similar methods.
-
表 1 浮点数矢量数据整型化
Table 1. Transforming float of vector data into integer
数据点编号 原始矢量数据坐标点 坐标值偏移量表示 偏移量整数化 X坐标 Y坐标 X坐标 Y坐标 X坐标 Y坐标 1 122.095 0 52.033 7 0 0 0 0 2 122.075 1 52.038 8 -0.019 9 0.005 1 -199 51 3 122.058 1 52.038 3 -0.017 0 -0.000 5 -170 -5 4 122.049 3 52.037 0 -0.008 8 -0.001 3 -88 -13 5 122.045 8 52.035 2 -0.003 5 -0.001 8 -35 -18 6 122.045 7 52.032 7 -0.000 1 -0.002 5 -1 -25 7 122.055 2 52.018 5 0.009 5 -0.014 2 95 -142 8 122.056 5 52.010 7 0.001 3 -0.007 8 13 -78 9 122.058 1 52.002 8 0.001 6 -0.007 9 16 -79 10 122.060 3 52.000 0 0.002 2 -0.002 8 22 -28 11 122.063 4 51.996 1 0.003 1 -0.003 9 31 -39 12 122.064 7 51.990 2 0.001 3 -0.005 9 13 -59 13 122.063 0 51.986 3 -0.001 7 -0.003 9 -17 -39 14 122.059 8 51.982 8 -0.003 2 -0.003 5 -32 -35 15 122.053 1 51.982 1 -0.006 7 -0.000 7 -67 -7 16 122.048 3 51.981 1 -0.004 8 -0.001 0 -48 -10 17 122.041 7 51.980 3 -0.006 6 -0.000 8 -66 -8 18 122.034 3 51.978 4 -0.007 4 -0.001 9 -74 -19 19 122.028 6 51.973 3 -0.005 7 -0.005 1 -57 -51 20 122.024 4 51.966 4 -0.004 2 -0.006 9 -42 -69 21 122.021 2 51.959 1 -0.003 2 -0.007 3 -32 -73 22 122.013 7 51.950 6 -0.007 5 -0.008 5 -75 -85 23 122.008 3 51.945 9 -0.005 4 -0.004 7 -54 -47 24 122.003 3 51.943 1 -0.005 0 -0.002 8 -50 -28 25 121.996 8 51.942 3 -0.006 5 -0.000 8 -65 -8 26 121.993 8 51.942 2 -0.003 0 -0.000 1 -30 -1 27 121.986 1 51.937 2 -0.007 8 -0.005 0 -78 -50 28 121.975 9 51.930 7 -0.010 2 -0.006 5 -102 -65 表 2 矢量数据压缩结果
Table 2. Vector data compression results
实验数据 原始数据大小(kb) 压缩后数据大小(kb) 压缩比 roa_4m.shp 583 54 10.8 rai_4m.shp 753 67 11.2 bou1_4l.shp 1 142 101 11.3 hyd1_4l.shp 1 151 101 11.4 hyd1_4p.shp 933 86 10.9 -
[1] Chang, Z.Q., Wu, l. X., 2004. Montanic grid DEM data compression based on Wavelet transform and mixed entropy coding. Geography and Geo-Information, 20(1): 24-27. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLGT200401005.htm [2] Chui, C.K., 1992. An introduction to Wavelets. Academic Press, New York, 2(2): 50-61. [3] Ding, X.X., 2004. Study and implementation of image coding based on integer wavelet transform (Dissertation). Nanjing University of Science and Technology, Nanjing (in Chinese with English abstract). [4] Douglas, D.H., Peucker, T.K., 1973. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. The Canadian Cartographer, 10: 112-122. doi: 10.3138/FM57-6770-U75U-7727 [5] Huang, P.Z., 1995. Vector data compression with prediction function. Acta Geodaetica et Cartographica Sinica, 24(4): 316-320, 249 (in Chinese with English abstract). [6] Kolesnikov, A., Akimov, A., 2007. Distortion-constrained compression of vector maps. Proceedings of the 2007 ACM symposium on applied computing, Seoul: 8-12. doi: >10.1145/1244002.1244005 [7] Li, Q., Yang, C.W., Chen, A.J., 2000. Research on geographical database model in WebGIS. Journal of Image and Graphics, 5(2): 119-123 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGTB200002009.htm [8] Wang, L.S., Min, X.Y., 2004. A mobile-client oriented compression algorithm for spatial vector data. Control Theory and Applications, 23(12): 20-22 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZDHJ200412005.htm [9] Wu, L.X., Shi, W.Z., 2003. Theory and algorithm of geographic information system. Science Press, Beijing, 10 (in Chinese). [10] Yang, J.Y., Yang, C.J., Ming, D.P., et al., 2004. Review on vector data compression and simplification of WebGIS. Computer Engineering and Applications, 40(32): 36-38 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSGG200432012.htm [11] Zhong, S.P., Gao, Q.S., 2004. An efficient lossless compression algorithm for a kind of two-dimension vector maps. Journal of System Simulation, 10(16): 2189-2194 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XTFZ20041000I.htm [12] 丁绪星, 2004. 基于整数小波变换的图像编码研究与实现(博士论文). 南京: 南京理工大学. [13] 黄培之, 1995. 具有预测功能的曲线矢量数据方法. 测绘学报, 24(4): 316-320, 249. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB504.009.htm [14] 李琦, 杨超伟, 陈爱军, 2000. WebGIS中的地理关系数据库模型研究. 中国图象图形学报, 5(2): 119-123. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200002009.htm [15] 王立胜, 闵晓瑜, 2004. 一种面向移动用户的空间矢量数据压缩算法. 自动化技术与应用, 23(12): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHJ200412005.htm [16] 吴立新, 史文中, 2003. 地理信息系统原理与算法. 北京: 科学出版社, 10. [17] 杨建宇, 杨崇俊, 明冬萍, 等, 2004. WebGIS系统中矢量数据的压缩与化简方法综述. 计算机工程与应用, 40(32): 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG200432012.htm [18] 钟尚平, 高庆狮, 2004. 一类矢量地图的无损压缩算法. 系统仿真学报, 10(16): 2189-2194. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ20041000I.htm