3D Geological Modeling Based on Geological and Gravity-Magnetic Data Integration in the Luanchuan Molybdenum Polymetallic Deposit, China
-
摘要: 三维地质建模是当前国内外矿产资源勘查与评价研究的重要途径和热点.以栾川钼多金属矿区为例,针对研究区地质背景复杂、成矿地质条件多样性特征,开展了基于地质(岩性地层及其物性特征、地质体产状数据)与重磁正反演集成技术组合的三维地质模型建模研究,其研究内容为:(1)根据研究区地质背景和成矿条件,确定研究区矿床地质特征以及近地表地质体的空间属性特征;(2)利用重磁数据,在定性解译地质信息的基础上,开展二度半正演方法定量解译研究,并运用三维位场概率成像方法反演和解译深部地质体;(3)根据研究区地质与重磁反演解译资料综合分析,确定晚侏罗世斑岩岩体和控矿构造的时-空-因关系.研究结果表明,基于地质岩性属性特征的重磁正反演联合解译,能够综合利用地质体之间的物性差异、成因关系界定其几何形态,从而在三维环境中建立它们的时空关系,即三维地质模型,为研究区深部找矿、矿体定位预测以及金属矿产资源定量评价提供技术支撑和新途径Abstract: 3D geological modeling is an important method and frontier of mineral resources exploration and assessment in the world. In this paper, a case study of the Luanchuan molybdenum polymetallic ore belt which has complicated geological setting and diversity metallogenic condition of geology, 3D geological modeling is combined geological knowledge with gravity and magnetic data integration. The research contents, methods, and results are summarized as the following aspects: (1) based on the geological setting and metallogenic conditions to determine the deposit characteristics of the study area and the near-surface geological object features of the spatial properties; (2) on basis of geological information in the qualitative interpretation using gravity and magnetic data, 2.5D forward interpretation and 3D imaging method of potential field inversion and interpretation of the probability of deep geological objects; (3) combination geological data with gravity and magnetic inversion datas to determine the space-time-genesis relationship among the Late Jurassic porphyry rock, ore, and ore mineralization favorable geological structures. The research results show that combination the geological characteristics including rock properties with inversion of gravity and magnetic interpretation to define geological object geometries, which is beneficial for geological prospecting, delineation of the quantitative evaluation of prospecting targets.
-
图 1 研究区1∶10 000地质矿产分布
1.铁矿;2.钼矿;3.铜矿;4.铅锌矿;5.锌矿;6.钨钼矿;7.锌钼矿;8.铜铅锌矿;9.黄铁矿;10.震旦系陶湾群秋木沟组;11.震旦系陶湾群凤脉庙组;12.震旦系陶湾群三岔口组;13.震旦系宽坪岩群四岔口组;14.蓟县系栾川群鱼库组;15.蓟县系栾川群大红口组;16.蓟县系栾川群煤窑沟组;17.蓟县系栾川群南泥湖组;18.蓟县系栾川群三川组;19.蓟县系管道口群白术沟组;20.蓟县系管道口组群冯家湾组;21.蓟县系管道口群杜关组;22.蓟县系管道口群巡检司组;23.蓟县系管道口群龙家园组;24.花岗闪长斑岩;25.(变)辉长岩;26.正长斑岩;27.斜长角闪岩;28.地层界线;29.断层;30.全新统
Fig. 1. 1∶10 000 geological and mineral resources map of study area
-
[1] Bonham-Carter, G.F., 1994. Geographic information systems for geoscientists: modelling with GIS. Computer Methods in the Geosciences, 13: 414. [2] Fallara, F., Legault, M., Rabeau, O., 2006.3-D integrated geological modeling in the Abitibi Subprovince (Québec, Canada): techniques and applications. Exploration and Mining Geology, 15(1-2): 27-43. doi: 10.2113/gsemg.15.1-2.27 [3] Fullagar, P.K., Hughes, N.A., Paine, J., 2000. Drilling-constrained 3D gravity interpretation. Exploration Geophysics, 31(2): 17-23. doi: 10.1071/EG00017 [4] Fullagar, P.K., Pears, G., Hutton, D., et al., 2004.3D gravity and aeromagnetic inversion for MVT lead-zinc exploration at Pillara, western Australia. Exploration Geophysics, 35(2): 142-146. doi: 10.1071/EG04142 [5] Guillen, A., Calcagno, P., Courrioux, G., et al., 2008. Geological modelling from field data and geological knowledge: part Ⅱ. Modeling validation using gravity and magnetic data inversion. Physics of the Earth and Planetary Interiors, 171(1-4): 158-169. doi: 10.1016/j.pepi.2008.06.014 [6] Houlding, S.W., 1994.3D geoscience modeling: computer techniques for geological characterization. Springer-Verlag, Berlin, Germany. [7] Iuliano, T., Mauriello, P., Patella, D., 2002. Looking inside Mount Vesuvius by potential fields integrated probability tomographies. Journal of Volcanology and Geotheral Research, 113(3-4): 363-378. doi: 10.1016/S0377-0273(01)00271-2 [8] Kaufmann, O., Martin, T., 2008.3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines. Computers & Geosciences, 34(3): 278-290. doi: 10.1016/j.cageo.2007.09.005 [9] Pan, M., Fang, Y., Qu, H.G., 2007. Discussion on several foundational issues in three-dimensional geological modeling. Geography and Geo-Information Science, 23(3): 1-5 (in Chinese with English abstract). http://www.researchgate.net/publication/291050448_Discussion_on_several_foundational_issues_in_three-dimensional_geological_modeling [10] Paolo, M., Domenico, P., 1999. Principles of probability tomography for natural-source electromagnetic induction fields. Geophysics, 64(5): 1403-1417. doi: 10.1190/1.1444645 [11] Sprague, K., Kemp, E., Wong, W., et al., 2006. Spatial targeting using queries in a 3-D GIS environment with application to mineral exploration. Computers & Geosciences, 32(3): 396-418. doi: 10.1016/j.cageo.2005.07.008 [12] Wang, G.W., Du, Y.S., Cui, G., et al., 2009. Mineral resource prediction based on 3D-GIS and BP network technology: a case of study in Pulang copper deposit, Yunnan Province, China. Fifth International Conference on Natural Computation (IEEE), 3: 382-386. doi: 10.1109/ICNC.2009.305 [13] Wang, G.W., Guo, Y.S., Du, Y.S., et al., 2007. Three-dimensional metallogenic prediction of Pulang porphyry copper deposit in Yunnan Province by using GIS technology. Mineral Deposits, 26(6): 651-658 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200706008.htm [14] Wu, Q., Xu, H., 2003. An approach to computer modelling and visualization of geological faults in 3D. Computers & Geosciences, 29(4): 503-509. doi: 10.1016/S0098-3004(03)00018-9 [15] Yan, C.H., Liu, G.Y., Peng, Y., 2009. Pb-Zn-Ag metallogenic rule in southwestern Henan Province. Geological Publishing House, Beijing (in Chinese). [16] Ye, H.S., Mao, J.W., Li, Y.F., et al., 2006. Characteristics and metallogenic mechanism of Mo-W and Pb-Zn-Ag deposits in Nannihu ore field, western Henan Province. Geoscience, 20(1): 165-174 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-xddz200601018.htm [17] Zanchi, A., Francescac, S., Stefano, Z., et al., 2009.3D reconstruction of complex geological bodies: examples from the Alps. Computers & Geosciences, 35(1): 49-69. doi: 10.1016/j.cageo.2007.09.003 [18] Zhang, Z.Q., Zhang, G.W., Liu, D.Y., et al., 2006. The isotope chronology of ophiolite, granite, clastic sedimentary rock in the Qinling orogeny belts. Geological Publishing House, Beijing, 190-192 (in Chinese). [19] 潘懋, 方裕, 屈红刚, 2007. 三维地质建模若干基本问题探讨. 地理与地理信息科学, 23(3): 1-5. doi: 10.3969/j.issn.1672-0504.2007.03.001 [20] 王功文, 郭运生, 杜杨松, 等, 2007. 基于GIS的云南普朗斑岩铜矿床三维成矿预测. 矿床地质, 26(6): 651-658. doi: 10.3969/j.issn.0258-7106.2007.06.007 [21] 燕长海, 刘国印, 彭翼, 2009. 豫西南地区铅锌银成矿规律. 北京: 地质出版社. [22] 叶会寿, 毛景文, 李永峰, 等, 2006. 豫西南泥湖矿田钼钨及铅锌银矿床地质特征及其成矿机理探讨. 现代地质, 20(1): 165-174. doi: 10.3969/j.issn.1000-8527.2006.01.019 [23] 张宗清, 张国伟, 刘敦一, 等, 2006. 秦岭造山带蛇绿岩、花岗岩和碎屑沉积岩同位素年代学和地球化学. 北京: 地质出版社, 190-192.