• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    激光雷达测量技术在地学中的若干应用

    马洪超

    马洪超, 2011. 激光雷达测量技术在地学中的若干应用. 地球科学, 36(2): 347-354. doi: 10.3799/dqkx.2011.037
    引用本文: 马洪超, 2011. 激光雷达测量技术在地学中的若干应用. 地球科学, 36(2): 347-354. doi: 10.3799/dqkx.2011.037
    MA Hong-chao, 2011. Review on Applications of LiDAR Mapping Technology to Geosciences. Earth Science, 36(2): 347-354. doi: 10.3799/dqkx.2011.037
    Citation: MA Hong-chao, 2011. Review on Applications of LiDAR Mapping Technology to Geosciences. Earth Science, 36(2): 347-354. doi: 10.3799/dqkx.2011.037

    激光雷达测量技术在地学中的若干应用

    doi: 10.3799/dqkx.2011.037
    基金项目: 

    国家"863"重点项目"灾害遥感应急监测与灾情信息快速提取技术" 2009AA12Z101-2-3

    详细信息
      作者简介:

      马洪超(1969-),男,教授,主要研究方向是激光雷达数据处理与应用.E-mail: hchma@whu.edu.cn

    • 中图分类号: P225

    Review on Applications of LiDAR Mapping Technology to Geosciences

    • 摘要: 对激光雷达测量技术在全球冰川监测、局部断裂带提取、滑坡监测和稳定性评价以及海岸线提取和海岸侵蚀等方面的应用做了较为全面的综述.作为一种新型的对地观测手段,激光雷达(含星载、机载、车载和地面)的应用已经从传统的测绘扩大到包括文物保护在内的诸多其他应用领域.所综述的激光雷达技术在地学研究中的4个应用方面,是传统地学研究中与全球变化和人居环境最为密切的方向.分析表明,激光雷达技术在这些研究方向中的应用大有作为.

       

    • 图  1  机载激光雷达数据获取示意

      Fig.  1.  A scheme showing how airborne LiDAR system works

      图  2  都-汶公路映秀镇附近数字表面模型(DSM)

      数据由Leica ALS50II机载激光雷达在2008年5月31日获取,点密度为0.8点/km2.图中为原始点云数据高程配色的结果,可以判读出多个滑坡(图中箭头所示)

      Fig.  2.  Digital surface model (DSM) along Du-Wen highway in the vicinity of Yingxiu Town

      表  1  几种类型激光雷达系统的简单比较

      Table  1.   Brief comparison among different types of LiDAR system

      类型 平台 相对飞行高度 点云密度 精度 主要用途 主要型号
      机载激光雷达 飞机(固定翼或直升机) 30~6 000 m 和多种因素有关.最大可以达到100点/m2以上 和多种因素有关.高程精度可以达到10 cm以下,平面精度可以达到10 cm左右 获取高精度数字表面模型和数字高程模型,可以应用于测绘、水利、林业、电力、城市规划等等多个领域 Leica ALS系列,Optech ALTM系列,TopoSys Harrier系列和Falcon系列,RIEGL LitterMapper系列等
      车载激光雷达 汽车 每m2几百个点以上 平面和水平精度略高于机载激光雷达系统 主要是对地物的侧面进行激光扫描 英国StreetMapper系统,Optech lynx系统等
      地面激光雷达 地面固定站点 每平方米可以达上千个点 平面和水平精度可以达到毫米,甚至亚毫米级 用于物体精细三维建模.广泛应用于工业测量、文物考古、建筑物建模等领域 主要由Leica、Optech、RIEGL等公司供应
      星载激光雷达 卫星 400~600 km 光斑直径60~70 m,点间距170 m 垂直精度15 cm 全球植被、极地冰川、大气等研究领域 主要是美国NASA发射ICESat卫星上的GLAS激光雷达
      下载: 导出CSV
    • [1] Arrowsmith, J.R., Zielke, O., 2009. Tectonic geomorphology of the San Andreas fault zone from resolution topography: an example from the Cholame segment. Geomorphology, 113: 10-81. doi: 10.1016/j.geomorph.2009.01.002
      [2] Axelsson, P., 1999. Processing of laser scanner data—algorithms and applications. ISPRS Journal of Photogrammetry and Remote Sensing, 54: 138-147. doi: 10.1016/S0924-2716(99)00008-8
      [3] Baltsavias, E.P., 1999. A comparison between photogrammetry and laser scanning. ISPRS Journal of Photogrammetry & Remote Sensing, 54: 83-94. doi: 10.1016/S0924-2716(99)00014-3
      [4] Begg, J.G., Mouslopoulou, V., 2010. Analysis of Late Holocene faulting within an active rift using LiDAR, Taupo rift, New Zealand. Journal of Volcanology and Geothermal Research, 190: 152-167. doi: 10.1016/j.jvolgeores.2009.06.001
      [5] Bindschadler, R., Choi, H., 2005. Detecting and measuring new snow accumulation on ice sheets by satellite remote sensing. Remote Sensing of Environment, 98: 388-402. doi: 10.1016/j.rse.2005.07.04
      [6] Boak, E.H., Turner, I.L., 2005. Shoreline definition and detection: a review. Journal of Coastal Research, 21(4): 688-703. doi: 10.2112/03-0071.1
      [7] Booth, A.M., Roering, J.J., Perron, J.T., 2009. Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon. Geomorphology, 109: 132-147. doi: 10.1016/j.geomorph.2009.02.027
      [8] Chang, K.J., Taboada, A., Chan, Y.C., 2005. Geological and morphological study of the Jiufengershan landslide triggered by the Chi-Chi Taiwan earthquake. Geomorphology, 71: 293-309. doi: 10.1016/j.geomorph.2005.02.004
      [9] Chust, G., Galparsoro, I., Borja, A., et al., 2008. Coastal and estuarine habitat mapping, using LiDAR height and intensity and multi-spectral imagery. Estuarine, Coastal and Shelf Science, 78(4): 633-643. doi: 10.1016/j.ecss.2008.02.003
      [10] Chust, G., Grande, M., Galparsoro, I., et al., 2010. Capabilities of the bathymetric Hawk Eye LiDAR for coastal habitat mapping: a case study within a Basque estuary. Estuarine, Coastal and Shelf Science, 89(3): 200-213. doi: 10.1016/j.ecss.2010.07.002
      [11] Dietrich, W.E., Bellugi, D., de Asua, R.R., 2001. Validation of the shallow landslide model, SHALSTAB, for forest management. In : Wigmosta, M.S., Burges, S.J., eds., Land use and watersheds: human influence on hydrology and geomorphology in urban and forest areas. American Geophysical Union Water Science and Application, 2: 195-227.
      [12] Fricker, H.A., Padman, L., 2006. Ice shelf grounding zone structure from ICESat laser altimetry. Geophysical Research Letters, 33. doi: 10.1029/2006GL026907
      [13] Glenn, N.F., Streutker, D.R., Chadwick D.J., et al., 2006. Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology, 73: 131-148. doi: 10.1016/j.geomorph.2005.07.006
      [14] Harding, D.J., Berghoff, G.S., 2000. Fault scarp detection beneath dense vegetation cover: airborne LiDAR mapping of the Seattle fault zone, Bainbridge Island, Washington State. In: Proceedings of the American Society of Photogrammetry and Remote Sensing Annual Conference, Washington, D.C. .
      [15] Harpold, R., Urban, T., Webb, C., Schutz, B., 2007. Assessment of ICESat repeat track estimation techniques for polar elevation change detection. American Geophysical Union, Fall Meeting 2007. http://adsabs.harvard.edu/abs/2007AGUFM.C23A0943H
      [16] Haugerud, R.A., Harding, D.J., Johnson, S.Y., et al., 2003. High-resolution LiDAR topography of the Puget Lowland, Washington. GSA TODAY. http://www.researchgate.net/publication/250948935_High-Resolution_Lidar_Topography_of_the_Puget_Lowland_Washington_-A_Bonanza_for_Earth_Science
      [17] Hudnut, K.W., Borsa, A., Glennie, C., et al., 2002. High-resolution topography along surface rupture of the 16 October 1999 Hector Mine, California, Earthquake (Mw 7.1) from airborne laser swath mapping. Bulletin of the Seismological Society of America, 92(4): 1570-1576. doi: 10.1785/0120000934
      [18] Inada, R., Takagi, M., 2010. Method of landslide measurement by ground based LiDAR. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, XXXVIII(Part 8). http://www.researchgate.net/publication/264855391_METHOD_OF_LANDSLIDE_MEASUREMENT_BY_GROUND_BASED_LIDAR
      [19] Liu, H., Sherman, D., Gu, S., 2007. Automated extraction of shorelines from airborne light detection and ranging data and accuracy assessment based on Monte Carlo simulation. Journal of Coastal Research, 23(6): 1359-1369. doi: 10.2112/05-0580.1
      [20] Ma, H.C., Yao, C.J., Zhang, S.D., 2008. Some technical issues of airborne LiDAR system applied to Wenchuan Earthquake relief works. Journal of Remote Sensing, (6): 925-932 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YGXB200806014.htm
      [21] Muskett, R.R., Lingle, S.C., 2008. Acceleration of surface lowering on the tidewater glaciers of Icy Bay, Alaska, U.S.A. from InSAR DEMs and ICESat altimetry. Earth and Planetary Science Letters, 265: 345-359. doi: 10.1016/j.epsl.2007.10.012
      [22] Nguyen, A.T., Herring, T.A., 2005. Analysis of ICESat Data using Kalman filter and Kriging to study surface height changes and surface characteristics in East Antarctica. Geophysical Research Letters, 32. doi: 10.1029/2005GL024272
      [23] Robertson, W.V., Whitman, D., Zhang, K.Q., et al., 2004. Mapping shoreline position using airborne laser altimetry. Journal of Coastal Research, 26(4): 884-892. doi: 10.2112/1551-5036(2004)20[884:MSPUAL]2.0.CO;2
      [24] Robertson, W.V., Zhang, K.Q., Whitman, D., 2007. Hurricane-induced beach change derived from airborne laser measurements near Panama City, Florida. Marine Geology, 237(3-4): 191-205. doi: 10.1016/j.margeo.2006.11.003
      [25] Roering, J.J., Stimely, L.L., Mackey, B.H., et al., 2009. Using DInSAR, airborne LiDAR, and archival air photos to quantify landsliding and sediment transport. Geophysical Research Letters, 36. doi: 10.1029/2009GL040374
      [26] Ruggiero, P., 2000. Beach monitoring in the Columbia River littoral cell, 1997-2000. Washington State Department of Ecology, Coastal Monitoring & Analysis Program, Publication No. 00-06-26, 112.
      [27] Schulz, W.H., 2007. Landslide susceptibility revealed by LiDAR imagery and historical records, Seattle, Washington. Engineering Geology, 89: 67-87. doi: 10.1016/j.enggeo.206.09.019
      [28] Shen, J.S., Zhai, J.S., Guo, H.T., 2009. Study on coastline extraction technology. Hydrographic Surveying and Charting, 29(6): 72-77 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYCH200906022.htm
      [29] Shrestha, R.L., Carter, W.E., Sartori, M., et al., 2005. Airborne laser swath mapping: Quantifying changes in sandy beaches over time scales of weeks to years. ISPRS Journal of Photogrammetry and Remote Sensing, 59(4): 222-232. doi: 10.1016/j.isprsjprs.2005.02.009
      [30] Slobbe, D.C., Lindenbergh, R.C., 2008. Estimation of volume change rates of Greenland's ice sheet from ICESat data using overlapping footprints. Remote Sensing of Environment, 112: 4204-4213. doi: 10.1016/j.rse.2008.07.004
      [31] Smith, B.E., Bentley, C.R., Raymond, C.F., 2005. Recent elevation changes on the ice streams and ridges of the Ross Embayment from ICESat crossovers. Geophysical Research Letters, 32. doi: 10.1029/2005GL024365
      [32] Stockdon, H.F., Sallenger, A.H., List, J.H., et al., 2002. Estimation of shoreline position and change using airborne topographic LiDAR data. Journal of Coastal Research, 18(3): 502-513. http://theowl.fsu.edu/jcr/article/download/81307/78447
      [33] Strurzenegger, M., Stead, D., Froese, C., et al., 2007. Ground based and airborne LiDAR for structural mapping of a large landslide: the Frank Slide. Proceedings of the 1st Canada-US rock mechanics Symposium, 27-31. http://www.researchgate.net/publication/285670157_Ground-based_and_airborne_LiDAR_for_structural_mapping_of_the_Frank_Slide
      [34] Szekely, B., Zamolyi, A., Draganits, E., et al., 2009. Geomorphic expression of neotectonic activity in a low relief area in an airborne laser scanning DTM: a case study of the Little Hungarian Plain (Pannonian basin). Tectonophysics, 474: 353-366. doi: 10.1016/j.tecto.2008.11.024
      [35] Wechsler, N., Rockwell, T.K., YehudaBen-Zion, 2009. Application of high resolution DEM data to detect rock damage from geomorphic signals along the central San Jancinto fault. Geomorphology, 113: 82-96. doi: 10.1016/j.geomorph.2009.06.007
      [36] Wehr, A., Lohr, U., 1999. Airborne laser scanning—an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54: 68-82. doi: 10.1016/S0924-2716(99)00011-8
      [37] Wesche, C., Riedel, S., Steinhage, D., 2009. Precise surface topography of the grounded ice ridges at the Ekstromisen, Antarctica, based on several geophysical data sets. ISPRS Journal of Photogrammetry and Remote Sensing, 64(4): 381-386. doi: 10.1016/j.isprsjprs.2009.01.005
      [38] Woolard, J.W., Colby, J.D., 2002. Spatial characterization, resolution, and volumetric change of coastal dunes using airborne LiDAR: Cape Hatteras, North Carolina. Geomorphology, 48(1-3): 269-287. doi: 10.1016/S0169-555X(02)00185-X
      [39] Xie, H., Ackley, S.F., 2010. Sea-ice thickness distribution of the Bellingshausen Sea from surface measurements and ICESat altimetry. Deep-Sea Research, doi: 10.1016/j.dsr2.2010.10.038
      [40] Yamamoto, K., Fukudo, Y., Doi, K., et al., 2008. Interpretation of the GRACE-derived mass trend in Enderby Land, Antarctica. Polar Science, 2: 267-276. doi: 10.1016/j.polar.2008.10.001
      [41] Yamanokuchi, T., Doi, K., 2010. Combined use of InSAR and GLAS data to produce an accurate DEM of the Antarctic ice sheet: example from the Breivikae Asuka station area. Polar Science, 4: 1-17. doi: 10.1016/j.polar.2009.12.002
      [42] Zhang, Y.H., 1996. Erosion hazards and their control in coastal regions of China. Journal of Catastrophology, 11(3): 15-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHXU603.003.htm
      [43] 马洪超, 姚春静, 张生德, 2008. 机载激光雷达在汶川地震应急响应中的若干关键问题探讨. 遥感学报, (6): 925-932. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200806014.htm
      [44] 申家双, 翟京生, 郭海涛, 2009. 海岸线提取技术研究. 海洋测绘, 29(6): 72-77. https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH200906022.htm
      [45] 张裕华, 1996. 中国海岸侵蚀危害及其防治. 灾害学, 11(3): 15-21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU603.003.htm
    • 加载中
    图(2) / 表(1)
    计量
    • 文章访问数:  215
    • HTML全文浏览量:  53
    • PDF下载量:  7
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-12-20
    • 网络出版日期:  2021-11-10
    • 刊出日期:  2011-03-01

    目录

      /

      返回文章
      返回