Research Advances in Metallogenic Tectonic Environment of Massive Sulfide Deposits
-
摘要: 对VHMS型、SEDEX型和VSHMS型3种块状硫化物矿床近年来成矿构造环境研究进展进行了较全面的回顾.其中,VHMS型块状硫化物矿床重点对弧间裂谷及弧后盆地构造环境下矿床时空演化及分布规律、古代VHMS型块状硫化物矿床全球对比认识及沟-弧-盆体系下现代海底块状硫化物研究热点地区的岩石类型、组合及岩浆演化规律进行了总结;SEDEX型块状硫化物矿床重点对澳大利亚北部元古代SEDEX型块状硫化物矿床集中区近年来成矿动力学背景研究进展进行了介绍.指出该区巨大的SEDEX型矿床成矿构造环境不是以往认为的被动大陆边缘裂谷,而是汇聚板块地球动力学背景之下远离弧后的大陆拉张盆地.尤其值得关注的是不仅元古界SEDEX型矿床如此,而且那些古生代的典型SEDEX型矿床(如沙利文,红狗矿床)同样被认为具有相同的产出构造背景.同时认为此种构造背景形成的SEDEX型矿床具有更大的找矿价值;VSHMS型矿床是近十年来逐渐得到重视的一类块状硫化物矿床,矿化特征及成矿作用与以上两类矿床相似,但其成矿构造环境应当位于上述两类矿床的过渡部位,对构造环境判断具有重要的指示意义.因此,在汇聚板块动力学背景下,上述3种块状硫化物矿床,自板块边缘岛弧一侧向远离板块边缘的大陆内部,构成了一个很好的矿床分带或成矿序列,即从VHMS型→VSHMS型→SEDEX型.Abstract: This paper summarizes in detail some advances in recent years about the ore-forming tectonic environment of VHMS type, SEDEX type and VSHMS type massive sulfide deposits, on which VHMS type deposit emphasizes three aspects as follows: the spatial and temporal distribution regularities of VHMS type ore deposits which occurred in intra-arc or backarc rift; metallogenic knowledge acquired from contrasting of ancient global VHMS type deposits; summary on the characteristics of lithological types and rock association, and general evolutionary processes of magma from modern seabed hydrothermal areas controlled under trench-island arc-backarc basin tectonic system. SEDEX type deposit emphasizes the metallogenic geodynamic environment from shale-hosted massive sulfide deposits of Proterozoic northeastern Australia. It is different from traditional understandings that these super-large size deposits do not occur in the intra-continental rift or aulocogen tectonic environments, whereas occurred in far-field backarc continental extension basin under plate convergent process, and it is especially pointed out that the paleaozoic typical SEDEX type deposit, such as Sullivan, Red dog, is also regarded as the same metallogenic geodynamic setting as their Proterozoic counterparts. Apart from this, these deposits under the tectonic environment related to convergent plate have more important ore-finding prospect. VSHMS type deposit was concerned much more in the latest ten years, although it has the similar ore ccurrence and metallogenic process as those deposits mentioned above, the different metallogenic tectonic environments, generally occurring in the transition tectonic setting between VHMS type and SEDEX type deposit, making it more important implication for tectonic setting. Accordingly, under convergent plate tectonic setting, from the plate boundary to far-field backarc intra-continental extension basin, a metallogenic sequence was established, i.e, VHMS→VSHMS→SEDEX.
-
Key words:
- mineralization /
- tectonic environment /
- massive sulfide deposit
-
图 1 澳大利亚北部Mount Isa盆地元古代SEDEX型块状硫化物矿床成矿构造环境(据Betts et al., 2003修编)
Fig. 1. Metallogenic tectonic environment of Proterozoic SEDEX-type massive sulfide deposit in Mount Isa basin of northern Australia
图 2 加拿大Yukon Finlayson Lake Wolverine VSHMS型块状硫化物矿床成矿构造环境(据Bradshaw et al., 2008修编)
Fig. 2. Metallogenic tectonic environment of VSHMS-type massive sulfide deposit in Yukon Finlayson Lake Wolverine of Canada
-
[1] Allen, R.L., Weihed, P., Blundell, D.J., et al., 2002. Global comparisons of volcanic-associated massive sulphide districts. Geological Society of London Special Publication, 204: 13-37. doi: 10.1144/GSL.SP.2002.204.01.02 [2] Barley, M.E., Groves, D.I., 1992. Supercontinent cycles and the distribution of metal deposits through time. Geology, 20: 291-294. doi: 10.1130/0091-7613(1992)020<0291:SCATDO>2.3.CO;2 [3] Barrett, T.J., Dawson, G.J., Maclean, W., 2008. Volcanic stratigraphy, alteration, and sea-floor setting of the Paleozoic Feitais massive sulfide deposit, Aljustrel, Portugal. Economic Geology, 103: 215-239. doi: 10.2113/gsecongeo.103.1.215 [4] Betts, P.G., Giles, D., 2002. Developing a geodynamically indicated targeting strategy for shale hosted massive sulphide Pb-Zn-Ag mineralization in the western fold belt of the Mount Isa terrane. Australian Journal of Earth Science, 49: 985-1010. doi: 10.1046/j.1440-0952.2002.00965.x [5] Betts, P.G., Giles, D., Lister, G.S., 2003. Tectonic environment of shale-hosted massive sulfide Pb-Zn-Ag deposits of Proterozoic northeastern Australia. Economic Geology, 98: 557-576. doi: 10.2113/gsecongeo.98.3.557 [6] Bradshaw, G.D., Rowins, S.M., Peter, J.M., et al., 2008. Genesis of the wolverine volcanic sediment-hosted massive sulfide deposit, Finlayson lake district, Yukon, Canada: mineralogical, mineral chemical, fluid inclusion, and sulfur isotope evidence. Economic Geology, 103: 35-60. doi: 10.2113/gsecongeo.103.1.35 [7] Carl, S., Kurtk, W., Richard, A.J., et al., 2005. Igneous rocks of the Brook Street terrane, New Zealand: implications for Permian tectonics of eastern Gondwana and magma genesis in modern intra-oceanic volcanic arcs. New Zealand Journal of Geology and Geophysics, 48: 167-183. doi: 10.1080/00288306.2005.9515107 [8] Goodfellow, W.D., Lydon, J.W., Turner, R.J.W., 1993. Geology and genesis of stratiform sediment-hosted (SEDEX) zinc-lead-silver sulphide deposits. Geological Association of Canada Special Paper, 40: 201-251. http://www.researchgate.net/publication/279543201_Geology_and_genesis_of_stratiform_sediment-hosted_SEDEX_zinc-lead-_silver_sulphide_deposits [9] Goodfellow, W.D., McCutcheon, S.R., 2003. Geologic and genetic attributes of volcanic sediment-hosted massive sulfide deposits of the Bathurst Mining Camp, northern New Brunswick—a synthesis. Economic Geology Monograph, 11: 245-301. http://www.researchgate.net/publication/287105530_Geological_and_genetic_attributes_of_volcanic_sediment-hosted_massive_sulfide_deposits_of_the_Bathurst_Mining_Camp_northern_New_Brunswick_-_A_synthesis [10] Goodfellow, W.D., McCutcheon, S.R., Peter, J.M., 2003. Massive sulfide deposits of the Bathurst mining camp, New Brunswick, and northern Maine. Economic Geology Monographs, 11: 930-952. [11] Groves, D.I., Bierlein, F.P., 2007. Geodynamic settings of mineral deposit systems. Journal of the Geological Society, London, 164: 19-30. doi: 10.1144/0016-76492006-065 [12] Haraguchi, S., Ishii, T., Kimura, J.I., 2008. Early tholeiitic and calc-alkaline arc magmatism of Middle to Late Eocene age in the southern Ogasawara (Bonin) forearc. Contributions to Mineralogy and Petrology, 155(5): 593-618. doi: 10.1007/s00410-007-0260-2 [13] Hutchison, R.W., 1980. Massive base metal sulphide deposits as guides to tectonic evolution. In: Wilson, J.T., Strangway, D.W., et al., eds., The continental crust and its mineral deposits. Geological Association of Canada Special Paper, 20: 660-684. [14] Ishizuka, H., Kawanobe, Y., Sarai, H., 1990. Petrology and geochemistry of volcanic rocks draged from the Okinawa trough, an active back-arc basin. Geochemical Journal, 24: 75-92. doi: 10.2343/geochemj.24.75 [15] Ishikawa, M., Sato, H., Furukawa, M., et al., 1991. Report on DELP 1988 cruises in the Okinawa trough, PartⅥ: petrology of volcanic rocks. Bulletin of the Earthquake Research Institute, 66: 151-178. http://www.researchgate.net/publication/29781612_Report_on_DELP_1988_Cruises_in_the_Okinawa_Trough_Part_6_Petrology_of_Volcanic_Rocks [16] Ishizuka, O., Kimura, J.I., Li, Y.B., et al., 2006a. Early stages in the evolution of Izu-Bonin arc volcanism: new age, chemical, and isotopic constraints. Earth and Planetary Science Letters, 250: 385-401. doi: 10.1016/j.epsl.2006.08.007 [17] Ishizuka, O., Taylor, R.N., Andy, M.J., et al., 2006b. Variation in the mantle sources of the northern Izu Arc with time and space: constraints from high-precision Pb isotopes. Journal of Volcanology and Geothermal Research, 156: 266-290. doi: 10.1016/j.jvolgeores.2006.03.005 [18] Kimura, M., Kaneoka, I., Kato, Y., et al., 1986. Report on DELP 1984 cruises in the middle Okinawa Trough, Part V: topography and geology of the central grabens and their vicinity. Bulletin of the Earthquake Research Institute, 61: 269-310. [19] Large, R.R., Cooke, D., McGoldrick, P., et al., 2008. Advances in genetic understanding of sediment hosted base metal and gold deposits(abstracts). In: The 33rd international geological congress. http//lib. cug. edu. cn/GeoScienceWorld. [20] Laznicka, P., 1976. Lead deposits in the global plate tectonic model. Geological Association of Canada Special Paper, 14: 243-271. [21] Li, W.Y., 2007. Classification, distribution and forming setting of massive sulfide deposits. Journal of Earth Sciences and Environment, 29(4): 331-344 (in Chinese with English abstract). http://www.researchgate.net/publication/281248315_Classification_distribution_and_forming_setting_of_massive_sulfide_deposits [22] Lidiak, E.G., Jolly, W.T., Dickin, A.P., 2008. Geochemical and tectonic evolution of Albian to Eocene volcanic strata in the Virgin Islands and eastern and central Puerto Rico. Geological Society of America, 40: 105. http://gsa.confex.com/gsa/2008AM/webprogram/Paper147686.html [23] Lydon, J.W., 2004. Sedimentary exhalative sulphides (SEDEX). In: Eckstrand, O.R., Sinclair, W.D., Thorpe, R.I., eds., Geology of Canadian mineral deposit types. Geological Survey of Canada, Geology of Canada, 8: 130-152. [24] Meyer, C., 1988. Ore deposits as guides to geologic history of the Earth. Annual Review of Earth and Planetary Sciences, 16: 147-171. doi: 10.1146/annurev.ea.16.050188.001051 [25] Mo, X.X., Deng, J.F., Dong, F.L., et al., 2001. Vocanical petrotectonic assemblages in Sanjiang orogenic belt, SW China and implication for tectonic. Geological Journal of China Universities, 72(2): 121-138 (in Chinese with English abstract). http://www.researchgate.net/publication/285844189_Volcanic_petrotectonic_assemblages_in_Sanjiang_orogenic_belt_SW_China_and_implication_for_tectonics [26] Mortensen, J.K., Hall, B.V., Bissig, T., et al., 2008. Age and paleotectonic setting of volcanogenic massive sulfide deposits in the Guerrero terrane of central Mexico: constraints from U-Pb age and Pb isotope studies. Economic Geology, 103: 117-140. doi: 10.2113/gsecongeo.103.1.117 [27] Ota, T., Utsunomiya, A., Uchio, Y., et al., 2007. Geology of the Gorny Altai subduction-accretion complex, southern Siberia: tectonic evolution of an Ediacaran-Cambrian intra-oceanic arc-trench system. Journal of Asian Earth Sciences, 30: 666-695. doi: 10.1016/j.jseaes.2007.03.001 [28] Piercey, S.J., Peter, J.M., Mortensen, J.K., 2008. A special issue devoted to continental margin massive sulfide deposits and their geodynamic enviroments. Economic Geology, 103: 1-4. doi: 10.2113/gsecongeo.103.1.1 [29] Sawkins, F.J., 1972. Sulfide ore deposits in relation to plate tectonics. Journal of Geology, 80: 377-397. doi: 10.1086/627762 [30] Sawkins, F.J., 1976. Metal deposits related to intracontinental hotspot and rifting environments. Journal of Geology, 84: 653-671. doi: 10.1086/628247 [31] Sawkins, F.J., 1990. Integrated tectonic-genetic model for volcanic-hosted massive sulfide deposits. Geology, 18: 1061-1064. doi: 10.1130/0091-7613(1990)018<1061:ITGMFV>2.3.CO;2 [32] Scott, S.D., 1980. Geology and structural control of Kuroko-type massive sulfide deposits. In: Wilson, J.T., Strangway, D.W., eds., The continental crust and its mineral deposits. Geological Association of Canada Special Paper, 20: 706-720. [33] Shukuno, H., Yoshihiko, T., Tani, K., et al., 2006. Origin of silicic magmas and the compositional gap at Sumisu submarine caldera, Izu-Bonin arc, Japan. Journal of Volcanology and Geothermal Research, 156: 187-216. doi: 10.1016/j.jvolgeores.2006.03.018 [34] Sibuet, J.C., Letouzey, J., Barbier, F., et al., 1987. Back-arc extension in the Okinawa trough. Journal of Geophysical Research, 92: 1041-1063. doi: 10.1029/JD092iD01p01041 [35] Sillitoe, R.H., 1972. A plate tectonic model for the origin of porphyry copper deposits. Economic Geology, 67: 184-197. doi: 10.2113/gsecongeo.67.2.184 [36] Sillitoe, R.H., 1974. Tectonic segmentation of the Andes: implications for magmatism and metallogeny. Nature, 250: 542-545. doi: 10.1038/250542a0 [37] Smith, I.E.M., Worthington, T.J., Price, R.C., et al., 2006. Petrogenesis of dacite in an oceanic subduction environment: Raoul Island, Kermadec Arc. Journal of Volcanology and Geothermal Research, 156: 252-265. doi: 10.1016/j.jvolgeores.2006.03.003 [38] Smith, I.E.M., Price, R.C., 2006. The Tonga-Kermadec arc and Havre-Lau back-arc system: their role in the development of tectonic and magmatic models for the western Pacific. Journal of Volcanology and Geothermal Research, 156: 315-331. doi: 10.1016/j.jvolgeores.2006.03.006 [39] Titley, S.R., Heidrick, T.L., 1975. Tectonic evolution of some porphyry copper systems of the southwestern Pacific and its implications. Economic Geology, 70: 1331. [40] Tornos, F., Chiaradia, M., 2004. Plumbotectonic evolution of the Ossa Morena Zone, Iberian Peninsula: tracing the influence of mantle-crust interaction in ore-forming processes. Economic Geology, 99: 965-985. doi: 10.2113/gsecongeo.99.5.965 [41] 李文渊, 2007. 块状硫化物矿床的类型、分布和形成环境. 地球科学与环境学报, 29(4): 331-344. doi: 10.3969/j.issn.1672-6561.2007.04.001 [42] 莫宣学, 邓晋福, 董方浏, 等, 2001. 西南三江造山带火山岩-构造组合及其意义. 高校地质学报, 7(2): 121-138. doi: 10.3969/j.issn.1006-7493.2001.02.001