Characteristics of Primary Halo Zonation and Prediction Pattern of Deep Orebody of the Huaaobaote Pb-Zn-Ag Polymetallic Deposit, Inner Mongolia
-
摘要: 花敖包特Pb-Zn-Ag多金属矿床构造上位于滨西太平洋成矿域内蒙古大兴安岭成矿带南段, 是一个近年来发现的与白垩纪早期构造岩浆活动有关的隐伏热液脉状矿床.研究表明: (1)矿体原生晕发育, 且分带明显.据其异常强度建立的元素横向分带顺序(从强到弱)为Cd→Pb→Zn→Ag→Sb→In→Hg→As→Cu→Sn→W→Mo→Bi, 排在序列前面的Cd、Pb、Zn、Sb、Ag等5种元素, 可作为远矿指示元素; 排在序列后端的As、Bi、Mo、W等4种元素, 可作为近矿指示元素.(2)根据Grigorian原生晕分带计算方法, 获得矿体原生晕轴向分带序列(自矿体头部至尾部)为Sb→Pb→Cd→Ag→Zn→Hg→Cu→In→As→Bi→Sn→Mo→W, 与Grigorian建立热液矿床标准分带基本一致.(3)构建深部矿体找矿模型, 其预测评价指标(Sb×Pb×Cd×Ag)D/(As×Sn×Mo×W)D在矿体头部为1.30、矿体中上部为0.35、矿体中下部为0.056、矿体尾部为0.005, 这表明该指标随深度的增加有规律地降低, 是预测深部矿体资源潜力的有效指标.Abstract: The Huaaobaote Pb-Zn-Ag polymetalic deposit, tectonically located at the south segment of the Dahinggan Mountains ore-forming belt of the circum-western Pacific metallogenetic domain, is a buried hydrothermal vein deposit associated with early Cretaceous tectono-magma activities discovered in recent years. The following conclusions are drawn by studying on primary halos of ore bodies. (1) The ore and halos forming-elements exhibit a clear zonation. Based on their anomalous intensity the transverse element zonation of the ore deposit are established as follows (from high to low): Cd→Pb→Zn→Ag→Sb→In→Hg→As→Cu→Sn→W→Mo→Bi. The five elements (Cd、Pb、Zn、Ag、Sb) ranked in the front of this zoning sequence can be regarded as long range indicators; and the four elements (Sn、W、Mo、Bi)in the rear of this zoning sequence regarded as short range indicators. (2) The axial zonation of this ore deposits is as follows: Sb→Pb→Cd→Ag→Zn→Hg→Cu→In→As→Bi→Sn→Mo→W, which is similar to the standard zonation of hydrothermal ore deposits determined by S.V. Grigorian. (3) Indexes such as (Sb×Pb×Cd×Ag)D/(As×Sn×Mo×W)D are constructed as a criterion for evaluating the ore potential in depth, which is equal or greater than 1.30 on the top portion of the ore bodies, 0.35-0.056 in the middle- upper portion, 0.056-0.005 in the middle-lower portion and equal or lesser than 0.005 at the end portion of the ore bodies, illustrating that the criterion values decrease regularly and abruptly with depth, and they can be used for predicting the ore potentials at a given depth.
-
图 1 大兴安岭中南段构造与矿产分布(据陈宏威,2007修改)
1.中生代断隆边界;2.中生代断陷带边界;3.深大断裂与主要断裂;4.复背斜轴;5.复向斜轴;6.夕卡岩型铁锡矿床;7.夕卡岩型铅锌多金属矿床;8.斑岩型银锡铜矿床;9.热液型银铅锌铜锡矿床;10.热液型铅锌多金属矿床;11.热液型铜矿床;12.热液型铜锡矿床
Fig. 1. Tectonics and distribution of mineral deposits in the middle-south segment of Dahinggan Mountains
表 1 成晕元素浓度分带参数(10-6)
Table 1. Zoning parameters of halo-forming elements (10-6)
参数 Ag As Bi Cd Cu Hg In Mo Pb Sb Sn W Zn X 2.44 50.03 0.18 0.74 6.35 0.06 0.07 0.47 92.89 19.83 2.79 1.84 171.00 S 1.38 24.87 0.02 0.50 1.61 0.03 0.03 0.10 72.78 5.70 1.38 0.66 101.50 Ca 5.19 99.77 0.23 1.74 9.57 0.13 0.12 0.66 238.45 31.22 5.54 3.16 373.58 2Ca 10.38 199.53 0.45 3.49 19.15 0.25 0.24 1.32 476.91 62.45 11.09 6.31 747.17 4Ca 20.76 399.07 0.91 6.98 38.29 0.51 0.48 2.64 953.82 124.90 22.17 12.63 1 494.34 注:X为平均值;S为标准离差;Ca为异常下限. 表 2 原生晕横向(水平)分带序列
Table 2. Horizontal zoning sequence of primary halo
中段 参数 Ag As Bi Cd Cu Hg In Mo Pb Sb Sn W Zn 941 m K 34.9 11.0 1.7 139.5 57.7 35.8 75.4 3.2 184.8 249.3 22.6 3.4 70.8 L(m) 62.0 59.1 45.0 62.0 62.0 58.7 62.0 34.0 62.0 62.0 62.0 28.2 62.0 K·L 2 164 650 78 8 649 3 580 2 104 4 676 108 11 460 15 459 1 401 97 4 390 序列 Sb-Pb-Cd-In-Zn-Cu-Ag-Hg-Sn-As-Mo-W-Bi 922 m K 28.6 9.7 1.8 164.8 31.3 40.8 103.4 3.3 137.8 119.5 19.6 4.6 87.4 L(m) 71.6 49.2 42.3 69.8 70.1 65.0 53.8 50.9 70.2 71.6 62.3 7.6 69.8 K·L 2 048 479 74 11 506 2 192 2 651 5 561 167 9 674 8 558 1 222 35 6 103 序列 Cd-Pb-Sb-Zn-In-Hg-Cu-Ag-Sn-As-Mo-Bi-W 893 m K 42.3 10.4 2.2 384.1 62.4 67.5 132.1 3.3 188.3 229.3 32.8 3.6 190.8 L(m) 70.0 63.5 29.7 70.0 63.3 69.7 61.6 55.0 70.0 70.0 67.2 32.5 69.9 K·L 2 961 660 66 26 889 3 950 4 704 8 137 180 13 183 16 053 2 206 116 13 328 序列 Cd-Sb-Zn-Pb-In-Hg-Cu-Ag-Sn-As-Mo-W-Bi 863 m K 49.1 23.4 1.6 192.8 18.1 22.5 52.9 3.7 157.9 33.4 23.1 5.4 92.2 L(m) 66.8 52.5 51.2 71.8 61.2 64.0 42.5 55.9 74.0 68.1 46.5 52.8 71.7 K·L 3 282 1 225 84 13 850 1 109 1 439 2 250 205 11 693 2 272 1 075 284 6 605 序列 Cd-Pb-Zn-Ag-Sb-In-Hg-As-Cu-Sn-W-Mo-Bi 注:K为衬度;L(m)为原生晕异常宽度. 表 3 成矿成晕元素分带指数
Table 3. Zoning indexes of primary halos
元素 标准化系数 标准化后线金属量(10-6·m) 分带指数 ZK85 ZK76 ZK92 ZK168 ZK85 ZK76 ZK92 ZK168 Pb 1 1 800 060 1 025 376 702 015.6 675 115.7 0.056 0.044 0.024 0.027 Zn 1 4 738 864 3 672 371 2 713 206 1 481 712 0.149 0.158 0.092 0.059 Ag 100 1 296 589 756 836 1 027 437 803 266.9 0.041 0.032 0.035 0.032 W 1 000 614 942.4 1 074 300 1 110 918 1 818 394 0.019 0.046 0.037 0.072 Hg 10 000 4 622 029 3 406 307 3 730 604 1 293 826 0.145 0.146 0.126 0.051 Cd 100 4 090 871 2 937 629 2 414 966 1 297 385 0.128 0.126 0.082 0.051 Sb 10 1 728 212 356 212.6 456 794.4 351 173.5 0.054 0.015 0.015 0.014 Sn 100 1 199 524 412 991.4 823 669.4 1 050 914 0.038 0.018 0.028 0.042 Bi 10 000 492 816.7 2 288 785 5 602 307 4 265 967 0.015 0.098 0.189 0.169 In 1 000 831 677 597 779.5 1 405 339 457 307.2 0.026 0.026 0.047 0.018 As 10 2 443 471 1 280 166 4 531 882 3 405 573 0.077 0.055 0.153 0.135 Mo 10 000 6 968 969 3 929 918 3 510 211 7 142 577 0.219 0.169 0.118 0.283 Cu 100 1 042 661 1 559 312 1 600 606 1 183 014 0.033 0.067 0.054 0.047 ∑ 31 870 686 23 297 985 29 629 956 25 226 225 -
[1] Beaudoin, A., Perrault, G., Bouchard, M., 1987. Distribution of gold, arsenic, antimony and tungsten around the Dest-or orebody, Noranda district, Abitibi, Quebec. Journal of Geochemical Exploration, 28(1-3): 41-70. doi: 10.1016/0375-6742(87)90039-2 [2] Beus, A.A., Grigorian, S.V., 1977. Geochemical exploration methods for mineral deposits. Applied Publishing Ltd., Wilmette Illinois, U.S.A., 287. [3] Chen, H.W., 2007. Ore-forming characters and prospecting orientation of copper-polymetal deposits in the middle and south sections of Dahinggan Mountains (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [4] Chen, W., Li, Y.X., Wang, S., et al., 2008. Geological and mineralizing fluid's characters of Hua'aobaote silver-polymetallic ore deposit. Nonferrous Metals (Mining Section), 60(5): 32-36, 50 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_nonferrous-metals-mining-section_thesis/0201220751300.html [5] Chen, Y.Q., Zhao, P.D., 1998. Zonation in primary halos and geochemical prospecting pattern for the Guilaizhuang gold deposit, eastern China. Natural Resources Research, 7(1): 37-44. doi: 10.1007/BF02782507 [6] Chen, Y.Q., Huang, J.N., Liang, Z., 2008. Geochemical characteristics and zonation of primary halos of Pulang porphyry copper deposit, northwestern Yunnan Province, southwestern China. Journal of China University of Geosciences, 19(4): 371-377. doi: 10.1016/S1002-0705(08)60070-9 [7] Clark, L.A., 1987. Near-surface lithogeochemical halo as an aid to discovery of deeply buried unconformity-type uranium deposits, Athabasca basin, Canada. Journal of Geochemical Exploration, 28(1-3): 71-84. doi: 10.1016/0375-6742(87)90040-9 [8] Dai, X.W., Yang, J.M., Zhang, C.Y., et al., 2000. The application of primary haloes of the ore deposit to the prognosis of deep concealed ore-bodies-exemplified by the Bushang gold deposit in Shandong Province. Mineral Deposits, 19(3): 245-256 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200003006.htm [9] Ghavami-Riabi, R., Theart, H.F.J., Jager, C.D., 2008. Detection of concealed Cu-Zn massive sulfide mineralization below eolian sand and a calcrete cover in the eastern part of the Namaqua metamorphic province, South Africa. Journal of Geochemical Exploration, 97: 83-101. doi: 10.1016/j.gexplo.2007.11.003 [10] He, Z., Zhang, X.R., 2006. Ore-controlling features and deep-seated metallogenic prognosis of Yinggezhuang gold belt, Shandong Province. Mineral Deposits, 25(2): 175-182 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200602006.htm [11] Konstantinov, M.M., Strujkov, S.F., 1995. Application of indicator halos (signs of ore remobilization) in exploration for blind gold and silver deposits. Journal of Geochemical Exploration, 54(1): 1-17. doi: 10.1016/0375-6742(95)00003-8 [12] Li, H., Wang, Z.N., Li, F.G., 1995a. Ideal models of superimposed primary halos in hydrothermal gold deposits. Journal of Geochemical Exploration, 55(1-3): 329-336. doi: 10.1016/0375-6742(94)00063-8 [13] Li, H., Yu, B., Li, D.L., et al., 2010a. Summary of new methods on deep prediction of geochemical exploration. Mineral Exploration, 1(2): 156-160 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSJS201002012.htm [14] Li, H., Zhang, G.Y., Yu, B., et al., 2010b. Structural superimposed halos method for prospecting blind ore-body in the deep of ore-districts. Earth Science Frontiers, 17(1): 287-293 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201001028.htm [15] Li, H., Zhang, W.H., Liu, B.L., et al., 1999. The study on axial zonality sequence of primary halo and some criteria for the application of this sequence for major types of gold deposits in China. Geology and Prospecting, 35(1): 32-35 (in Chinese with English abstract). [16] Li, Y.G., Cheng, H.X., Yu, X.D., et al., 1995b. Geochemical exploration for concealed nickel-copper deposits. Journal of Geochemical Exploration, 55(1-3): 309-320. doi: 10.1016/0375-6742(94)00065-4 [17] Li, Z.X., Xie, Z.Y., Liu, Z., et al., 2008. Geology and genesis of the Huaaobaote lead-zinc deposit in Inner Mongolia. Geology and Resources, 17(4): 277, 278-281 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GJSD200804008.htm [18] Li, Z.X., Zhuo, F.H., Cui, D., et al., 2009. Geology and genesis of the Daolundaba copper-polymetal deposit in Inner Mongolia. Geology and Resources, 18(1): 27-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GJSD200901007.htm [19] Liu, C.M., 2006. Progress in studies on primary halos of ore deposit. Acta Geological Sinica, 80(10): 1528-1538 (in Chinese with English abstract). http://www.researchgate.net/publication/287418864_Progress_in_studies_on_primary_halos_of_ore_deposit [20] Liu, L.M., Peng, S.L., 2003. Prediction of hidden ore bodies by synthesis of geological, geophysical and geochemical information based on dynamic model in Fenghuangshan ore field, Tongling district, China. Journal of Geochemical Exploration, 81(1-3): 81-98. doi: 10.1016/j.gexplo.2003.08.004 [21] Nie, L.S., Cheng, Z.Z., Wang, X.Q., et al., 2007. Comparative study of deep-penetrating geochemical methods: a case study of the Hua'obote lead-zinc deposits, Inner Mongolia, China. Geological Bulletin of China, 26(12): 1574-1578 (in Chinese with English abstract). http://www.researchgate.net/publication/289327145_Comparative_study_of_deep-penetrating_geochemical_methods_a_case_study_of_the_Hua'obote_lead-zinc_deposits_Inner_Mongolia_China [22] Niu, S.Y., Sun, A.Q., Guo, L.J., et al., 2008. Ore-control structures and prospecting for the Baiyinnuoer Pb-Zn deposit in the Dahinggan range. Geotectonica et Metallogenia, 32(1): 72-80 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200801011.htm [23] Pan, X.F., Wang, S., Hou, Z.Q., et al., 2009. Geology and metallogenesis of daolundaba copper polymetallic deposits, Inner Mongolia. Geotectonica et Metallogenia, 33(3): 402-410 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200903014.htm [24] Shao, Y., 1997. Lithogeochemical (primary halos) methods for hydrothermal mineral deposits. Geological Publishing House, Beijing (in Chinese). [25] Shao, J.A., Zhang, L.Q., Mu, B.L., et al., 2007. Upwelling of Dahinggan Mountains and its geodynamic background. Geological Publishing House, Beijing, 250 (in Chinese). [26] Shipulin, F.K., Genkin, A.D., Distler, V.V., et al., 1973. Some aspects of the problem of geochemical methods of prospecting for concealed mineralization. Journal of Geochemical Exploration, 2(3): 193-235. doi: 10.1016/0375-6742(73)90001-0 [27] Sillitoe, R.H., 2010. The challenge of finding new mineral resources: an introduction. In: Goldfarb, R.J., Marsh, E.E., Monecke, T., eds., The challenge of finding new mineral resources: global metallogeny, innovative exploration, and new discoveries. Society of Economic Geologists, Inc. . [28] Sun, H.S., Sun, L., Cao, X.Z., et al., 2008. Axial/vertical zoning characteristics of primary halos and geochemical exploration indicators for deep ore body prognosis in Shangzhuang gold deposit, Northwest Jiaodong peninsula, Shandong Province. Mineral Deposits, 27(1): 64-70 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-KCDZ200801008.htm [29] Wang, J.B., Wang, Y.W., Wang, L.J., 2000. Copper metallogenic setting and prospecting potential in the middle-southern part of Dahinggan Mountains. Geology and Prospecting, 36(5): 1-4 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200005000.htm [30] Xiang, W.D., Hu, S.K., Yan, H.Q., et al., 1998. Main characterstics of Ag-Pb-Zn deposits and discussion on their mineralization on the western slope of the great Hinggan mountains, NE China and neighboring area. Uranium Geology, 14(6): 344-351 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKDZ199806003.htm [31] Zhang, D.Q., Bao, X.W., 1990. A Study on the petrology, geochemistry and genesis of the Bayannur intermediate-acidic volcano-plutonic complex in eastern Inner Mongolia. Geological Review, 36(4): 289-297 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199004000.htm [32] Zhang, D.Q., Lei, Y.F., Luo, T.Y., et al., 1991. Geological characteristics and metallogeny of the Baiyinnuo lead-zinc deposit, Inner Mongolia. Mineral Deposits, 10(3): 204-216 (in Chinese with English abstract). http://www.researchgate.net/publication/312451487_Geological_characteristics_and_metallogeny_of_the_Baiyinnuo_Lead-Zinc_deposit_Inner_Mongolia [33] Zhao, P.D., 2007. Quantitative mineral prediction and deep mineral exploration. Earth Science Frontiers, 14(5): 1-10 (in Chinese with English abstract). http://www.researchgate.net/publication/285501491_Quantitative_mineral_prediction_and_deep_mineral_exploration [34] Zhou, Y., 1989. Geochemical exploration for deeply hidden ore in southeastern Hubei Province. Journal of Geochemical Exploration, 33(1-3): 135-144. doi: 10.1016/0375-6742(89)90024-1 [35] Zhou, Z.H., Feng, J.R., Lü, L.S., et al., 2010. Ore-forming mechanism and the temporal and spatial structure of the Huanggangliang-Wulanhaote tin-lead-zinc-copper-polymetallic metallogenic belt, Inner Mongolia. China Mining Magazine, 19(6): 100-104 (in Chinese with English abstract). [36] 陈宏威, 2007. 大兴安岭中南段铜多金属矿成矿特征与找矿方向(学位论文). 北京: 中国地质大学, 1-63. [37] 陈伟, 李应栩, 王硕, 等, 2008. 花敖包特银多金属矿矿床地质及成矿流体特征. 有色金属, 60(5): 32-36, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKU200805013.htm [38] 代西武, 杨建民, 张成玉, 等, 2000. 利用矿床原生晕进行深部隐伏矿体预测——以山东埠上金矿为例. 矿床地质, 19(3): 245-256. doi: 10.3969/j.issn.0258-7106.2000.03.006 [39] 贺振, 张学仁, 2006. 山东英格庄金矿床构造控矿特征及深部预测. 矿床地质, 25(2): 175-182. doi: 10.3969/j.issn.0258-7106.2006.02.007 [40] 李惠, 禹斌, 李德亮, 等, 2010a. 化探深部预测新方法综述. 矿产勘查, 1(2): 156-160. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS201002012.htm [41] 李惠, 张国义, 禹斌, 等, 2010b. 构造叠加晕找盲矿法及其在矿山深部找矿效果. 地学前缘, 17(1): 287-293. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201001028.htm [42] 李惠, 张文华, 刘宝林, 等, 1999. 中国主要类型金矿床的原生晕轴向分带序列研究及其应用准则. 地质与勘探, 35(1): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT901.008.htm [43] 李振祥, 谢振玉, 刘召, 等, 2008. 内蒙古西乌珠穆沁旗花敖包特银铅锌矿矿床地质特征及成因初探. 地质与资源, 17(4): 277, 278-281. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD200804008.htm [44] 李振祥, 周福华, 崔栋, 等, 2009. 内蒙古道伦达坝铜多金属矿矿床地质特征及成因初探. 地质与资源, 18(1): 27-30. doi: 10.3969/j.issn.1671-1947.2009.01.006 [45] 刘崇民, 2006. 金属矿床原生晕研究进展. 地质学报, 80(10): 1528-1538. doi: 10.3321/j.issn:0001-5717.2006.10.006 [46] 聂兰仕, 程志中, 王学求, 等, 2007. 深穿透地球化学方法对比研究——以内蒙古花敖包特铅锌矿为例. 地质通报, 26(12): 1574-1578. doi: 10.3969/j.issn.1671-2552.2007.12.009 [47] 牛树银, 孙爱群, 郭利军, 等, 2008. 大兴安岭白音诺尔铅锌矿控矿构造研究与找矿预测. 大地构造与成矿学, 32(1): 72-80. doi: 10.3969/j.issn.1001-1552.2008.01.010 [48] 潘小菲, 王硕, 侯增谦, 等, 2009. 内蒙古道伦达坝铜多金属矿床特征研究. 大地构造与成矿学, 33(3): 402-410. doi: 10.3969/j.issn.1001-1552.2009.03.011 [49] 邵跃, 1997. 热液矿床岩石测量(原生晕法)找矿. 北京: 地质出版社. [50] 邵济安, 张履桥, 牟保磊, 等, 2007. 大兴安岭的隆起与地球动力学背景. 北京: 地质出版社, 250. [51] 孙华山, 孙玲, 曹新志, 等, 2008. 胶西北上庄金矿床原生晕轴(垂)向分带特征及深部矿体预测的勘查地球化学标志. 矿床地质, 27(1): 64-70. doi: 10.3969/j.issn.0258-7106.2008.01.007 [52] 王京彬, 王玉往, 王莉娟, 2000. 大兴安岭中南段铜矿成矿背景及找矿潜力. 地质与勘探, 36(5): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200005000.htm [53] 向伟东, 胡绍康, 阎鸿铨, 等, 1998. 大兴安岭西坡及邻区银铅锌矿床成矿作用若干问题的讨论. 铀矿地质, 14(6): 344-351. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ199806003.htm [54] 张德全, 鲍修文, 1990. 内蒙古白音诺中酸性火山-深成杂岩体的岩石学、地球化学与成因研究. 地质论评, 36(4): 289-297. doi: 10.3321/j.issn:0371-5736.1990.04.001 [55] 张德全, 雷蕴芬, 罗太阳, 等, 1991. 内蒙古白音诺铅锌矿床地质特征及成矿作用. 矿床地质, 10(3): 204-216. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199103001.htm [56] 赵鹏大, 2007. 成矿定量预测与深部找矿. 地学前缘, 14(5): 1-10. doi: 10.3321/j.issn:1005-2321.2007.05.001 [57] 周振华, 冯佳睿, 吕林素, 等, 2010. 内蒙古黄岗梁-乌兰浩特锡铅锌铜多金属成矿带成矿机制及时空架构. 中国矿业, 19(6): 100-104. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201006037.htm